
Eric Reckwerdt

A Linear Algebraic Algorithm for Graph Drawing

This paper will give a brief overview of the realm of graph drawing, followed
by a linear algebraic approach, ending with an example of our algorithm.

1 Graph Visualization

A graph, at the most basic level, is a collection of vertices or points connected
together by a collection of edges or lines. They can be used for countless pur-
poses to represent various kinds of relations between data, allowing a viewer
to compactly view the relationships between elements. The data could also be
shown in a table or encoded in a matrix, but the information is much harder to
understand and some simple properties of a graph would be nigh-impossible to
see. Concepts of symmetry and circuits are obvious when seen in a graph but
hard to grasp when the data is solely in table form.

The visual representation, then, should be a high priority when dealing with
graphs. The difference between a readable graph and one that hides important
information is surprisingly easy to categorize. Di Battista et al.[1] lay out eleven
aesthetics of a readable graph. Many of these are related to each other. For
a typical graph, most of these cannot happen concurrently, but many can be
minimized. The properties that we want to minimize are:

1. the number of crossing edges,

2. the total area of the drawing,

3. the sum of the lengths of the edges,

4. the maximum length of an edge,

5. the variance of edge lengths, i.e. trying to have uniform edge length,

6. the total number of bends in a graph,

7. the maximum number of bends on one edge,

8. the variance of edge bends,

9. and the aspect ratio, for better display on a screen.

Besides these we also want to display symmetries and maximize the smallest
angle between two incident edges.

Arranging a small graph on paper to meet these criteria can be fairly simple,
but when we start working with 100’s and 1000’s of vertices and associated edges,
our task becomes very difficult. We must then rely on automated methods to
ease our tasks, letting a computer layout our graph, tweaking the final image a
little by hand if necessary.

1

Each algorithm has its own pros and cons, and is good at achieving a set
of aesthetics while poor at fulfilling others. For each graph we must choose the
algorithm that emphasizes the important information in the graph. For instance,
if our graph is the intended layout of an electrical circuit board, we would want
to minimize edge bends and edge length, and it would not make sense to try to
maximize the smallest angle between incident edges and displaying symmetry
is neither good nor bad.

Many of the algorithms used to visualize graphs are combinatorial in na-
ture. They take fundamental properties of the graph and systematically lay
out vertices in a certain order which produces a visually nice graph. These are
typically type-dependent, since an algorithm might exploit the tree structure of
a binary tree, and would not be applicable on a graph with cycles in it. Some
are applicable to a wide range of graphs, working better for some, worse for
others. Many divide-and-conquer techniques are this way.

Another type-independent technique is the force-based approach, which uses
basic physics, viewing edges as springs with an ideal tension, and letting the
system settle to a stable configuration. These algorithms create symmetric and
balanced graphs, but will not minimize edge crossings. Some of these techniques
use linear algebra in the implementation of the algorithm, but mainly for book-
keeping.

2 Spectral Distance Embedding

The approach that we will dissect is one that tries to approximate the graph-
theoretical distances of the vertices. It was designed by Ali Civril, Malik
Magdon-Ismail and Eli Bocek-Rivele at the Rensselaer Polytechnic Institute
in Troy, New York. They described their technique in a paper entitled SDE:
Graph Drawing Using Spectral Distance Embedding.[2] Similar to a
forced-base approach (which would try to create uniform edge length, so each
spring edge was near its ideal length), their method creates symmetric, balanced
graphs by exploiting linear algebra. It uses the spectral decomposition of a dis-
tance matrix to return coordinates that estimate (or, in the case that the graph
is embeddable, exact) the said distance matrix.

First we will define a few things that will be necessary for the algorithm to
work. Then we will prove that the algorithm gives us coordinates that approx-
imate the graph-theoretical distances.

Theorem 1 Spectral Value Decomposition
Suppose A is a Hermitian matrix of size n, rank r with eigenvalues λ1, . . . , λn

and associated orthonormal eigenvectors u1, . . . ,un. Then A =
∑n

k=1 λkukut
k.

Proof
Since A is Hermitian, A = UDU∗, where U = [u1| . . . |un], ui forming an

orthonormal basis for Rn, thus U is unitary, and D is the diagonal matrix
with λi on the diagonal. Then we can apply Rank One Decomposition, so
A =

∑n
k=1 Ak, Ak = λkxkyt

k, where xk is the kth column of U and yk is the

2

kth row of U−1. But the kth column of U is uk, so xk = uk and U−1 = U t, so
yk = uk. Thus A =

∑n
k=1 λkukut

k. (see [3] for rank-one decomposition, etc).

Definition 1 The rank-d approximation to A with respect to the spectral norm
is Ad =

∑d
k=1 λkukut

k, where λ1 ≥ λ2 ≥ · · · ≥ λn and ui is the eigenvector
associated with λi.

Definition 2 The graph-theoretical distance between two vertices vi and vj is
the shortest number of edges that must be transversed to move from one vertex
to the other.

Definition 3 A projection matrix A is an n × n matrix that fulfills two prop-
erties: It is symmetric and idempotent, ie A2 = A

In our proof we will use the projection matrix γ = In − 1
n1n1t

n where

1n =

1
1
...
1

 so γ =

1− 1

n − 1
n . . . − 1

n
− 1

n 1− 1
n . . . − 1

n
...

...
. . .

...
− 1

n − 1
n . . . 1− 1

n

 .

γ is clearly symmetric, and γ2 = γ, thus γ is a projection matrix. Another
nice property of γ is that 1t

nγ = γ1n = 0.

Theorem 2 Spectral Distance Embedding
Given a graph G = (V,E) with n nodes, let V = {v1, v2, . . . , vn} be the set

of vertices and E be the set of edges between V . Let X = [x1, . . . ,xn]t where xi

is the set of planar coordinates of vi. Then XXt ≈ M2 where M2 is the rank-2
approximation of a Hermitian matrix of size n.

Proof Following Civril et al.’s construction of the algorithm,
Let D be a size n square matrix such that [D]ij is the square of the graph-

theoretical distance between vi and vj . Then what we want is ‖xi−xj‖2 ≈ [D]ij .
Expanding our equation, we see that

x2
i + x2

j + 2xixj ≈ [D]ij . (1)

If we want to interpret this equation in terms of matrices, let

Y =

x1

x2

...
xn

Q =

‖x1‖2
‖x2‖2

...
‖xn‖2

 and 1n =

1
1
...
1

Then the n× 2 matrix Y is the matrix of vector positions (We’re working in

two dimensions, but the algorithm is applicable for any desired dimension), Q

3

is the vector of squared norms of the vector positions, and 1n is the vector of n
ones.

So our equation can be rewritten as [Q1t
n]ij + [1nQt]ij − 2[Y Y t]ij ≈ [D]ij ,

then

Q1t
n + 1nQt − 2Y Y t ≈ D.

If we multiply our equation on both sides by the projection matrix γ that
we discussed earlier, we get

γQ1t
nγ + γ1nQtγ − γ2Y Y tγ ≈ γDγ

⇒ γ2Y Y tγ ≈ γDγ

⇒ γY (γY)t ≈ −1
2
γDγ

since 1t
nγ = γ1n = 0 and γ = γt.

To simplify this, let us define X = γY = (Y − 1
n1n1t

nY). So X is a vector
of coordinates of V , each translated by 1

n1n1t
nY . But we don’t care if the

coordinates have been translated, since we only care about their relationship to
each other, which has been preserved. So finding X is just as good as finding
Y to us, which, as you remember, is the point of all this. Anyway, if we define
M = − 1

2γDγ, then we have a translated distance squared matrix.
Notice that X has rank 2, since it’s an n × 2 matrix. We hope that M

would have rank 2, which would be the case if D were a true Euclidean distance
matrix. Since it’s the graph-theoretical distance matrix, if D is not embeddable
in R2, M might have a rank greater than 2. So we have to use the rank-2
approximation of M , M2. Thus

XXt = M2.

q.e.d.

We now see that to retrieve X, all we need to create is D and γ, and find
the rank-2 approximation of − 1

2γDγ. Then X = [
√

λ1u1|
√

λ2u2].

3 An Example

In order to see this clearly, let’s do an example. Take the eight vertex graph G
in figure one. This is not a bad graph, by any means, but I feel like we might
know this graph by a different name if it was arranged slightly differently. Let’s
see what our algorithm gives us.

4

Figure 1: A graph G of 8 vertices.

To start, we need to compute D. Let D′ be the graph-theoretical distance
matrix, then [D]ij = [D′]2ij . So

D′ =

0 1 2 3 2 1 2 1
1 0 1 2 1 2 3 2
2 1 0 1 2 3 2 1
3 2 1 0 1 2 1 2
2 1 2 1 0 1 2 3
1 2 3 2 1 0 1 2
2 3 2 1 2 1 0 1
1 2 1 2 3 2 1 0

and D =

0 1 4 9 4 1 4 1
1 0 1 4 1 4 9 4
4 1 0 1 4 9 4 1
9 4 1 0 1 4 1 4
4 1 4 1 0 1 4 9
1 4 9 4 1 0 1 4
4 9 4 1 4 1 0 1
1 4 1 4 9 4 1 0

Since n = 8,

γ =

7
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8
− 1

8
7
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8 − 1
8

− 1
8 − 1

8
7
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8
− 1

8 − 1
8 − 1

8
7
8 − 1

8 − 1
8 − 1

8 − 1
8

− 1
8 − 1

8 − 1
8 − 1

8
7
8 − 1

8 − 1
8 − 1

8
− 1

8 − 1
8 − 1

8 − 1
8 − 1

8
7
8 − 1

8 − 1
8

− 1
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8
7
8 − 1

8
− 1

8 − 1
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8
7
8

and

M = −1
2
γDγ =

1.5 1 −.5 −3 −.5 1 −.5 1
1 1.5 1 −.5 1 −.5 −3 −.5

−.5 1 1.5 1 −.5 −3 −.5 1
−3 −.5 1 1.5 1 −.5 1 −.5
−.5 1 −.5 1 1.5 1 −.5 −3

1 −.5 −3 −.5 1 1.5 1 −.5
−.5 −3 −.5 1 −.5 1 1.5 1

1 −.5 1 −.5 −3 −.5 1 1.5

We can see that M is still Hermitian, which is good. Now to find the

eigenvalues, we can put it through Octave, Mathematica, or another similar

5

calculator to get such values. We see that M has rank 6, so we will have to
find the rank-2 approximation of M. The eigenvalues of M are 6, 2, and 0. So
λ1 = λ2 = 6.

Two orthogonal eigenvectors for λ = 6 are u1 =

0
−.57630
−.25807

0
−.28523

.57734
−.29210
−.28523

,u2 =

−.61237
−.20412

.20412

.61237

.20412
−.20412

.20412
−.20142

So we can now retrieve X.

X = [
√

(λ1)u1|
√

(λ2)u2] =

0 −1.5
−1.41165 −.5
−.63214 .5

0 1.5
−.77951 .5

.63214 −.5
1.41165 .5
.77951 −.5

=

x1

x2

x3

x4

x5

x6

x7

x8

Just to check, XXt = M2, and ‖x2−x7‖ = 2.99517 ≈ 3 = [D′]27, which was

the criteria we were hoping to achieve. We are off by .005 there, but that’s not
too bad. The visualization then ends up looking like figure 2, a slightly squished
cube.

Is this visualization better than the one in figure 1? It lets us see a greater
number of symmetries, and we can abstract the 2d figure into a cube, which
we naturally understand. So yes, it probably is. The graph could use some
tweaking to get it looking better and less squished, but the algorithm gives us a
start to work from. So overall, the algorithm is effective and simple, if one has
the computing power.

6

Figure 2: The new visualization of our graph.

References

[1] P. E. Ioannis G. Tollis, Giuseppe Di Battista and R. Tamassia, Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, Inc., 1999.

[2] A. Civril, M. Magdon-Ismail, and E. Bocek-Rivele, “Sde: Graph drawing us-
ing spectral distance embedding,” http://citeseer.ist.psu.edu/751162.html.

[3] R. Beezer, a first course in Linear Algebra. self-published, ver. 1.08, 2007.

copyright c©2007 Eric Reckwerdt. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Document
License, Version 1.2 or later published by the Free Software Foundation; A copy
of the license can be found at http://www.gnu.org/copyleft/fdl.html.

7

