- 1. What do relations and mappings have in common?
- 2. What makes relations and mappings different?
- 3. State carefully the three defining properties of an equivalence relation. In other words, do not just *name* the properties, give their definitions.
- 4. What is the big deal about equivalence relations? (Hint: partitions)
- 5. Find the greatest common divisor of 84 and 52. Find integers r and s so that $r(84) + s(52) = \gcd(84, 52)$.

Reading Questions, Chapter 02

- 1. In the group \mathbb{Z}_8 compute (a) 6+7, (b) 2^{-1}
- 2. In the group U(16) compute (a) $5 \cdot 7$, (b) 3^{-1}
- 3. State the definition of a group.
- 4. Explain a single method that will decide if a subset of a group is itself a subgroup.
- 5. Explain the origin of the term "abelian" for a commutative group.

Reading Questions, Chapter 03

- 1. What is the order of the element 3 in U(20)?
- 2. What is the order of the element 5 in U(23)?
- 3. Find three generators of \mathbb{Z}_8 .
- 4. Find three generators of the 5^{th} roots of unity.
- 5. Show how to compute $15^{40} \pmod{23}$ efficiently by hand. Check your answer with SAGE.

- 1. Express (134)(354) as a cycle, or a product of disjoint cycles.
- 2. What is a transposition?
- 3. What does it mean for a permutation to be even or odd?
- 4. Describe another group that is fundamentally the same as A_3 .
- 5. Write the elements of the symmetry group of a hexagon using permutations in cycle notation.

Reading Questions, Chapter 05

- 1. State Lagrange's Theorem in your own words.
- 2. Determine the left cosets of $\langle 3 \rangle$ in \mathbb{Z}_9 .
- 3. The set $\{(), (12)(34), (13)(24), (14)(23)\}$ is a subgroup of S_4 . What is its index in S_4 ?
- 4. Suppose G is a group of order 29. Describe G.
- 5. p = 137909 is a prime. Explain how to compute $57^{137909} \pmod{137909}$ without a calculator.

Reading Questions, Chapter 08

- 1. Determine the order of (1, 2) in $\mathbb{Z}_4 \times \mathbb{Z}_8$.
- 2. List three properties of a group that are preserved by an isomorphism.
- 3. Find a group isomorphic to \mathbb{Z}_{15} that is an external direct product of two non-trivial subgroups.
- 4. Explain why we can now say "the infinite cyclic group"?
- 5. Compare and contrast external direct products and internal direct products.

- 1. In your own words, what is a factor group?
- 2. $8\mathbb{Z}$ is a normal subgroup in \mathbb{Z} . In the factor group $\mathbb{Z}/8\mathbb{Z}$ perform the computation $(3 + 8\mathbb{Z}) + (7 + 8\mathbb{Z})$.
- 3. State the definition of a simple group. What is interesting about simple groups historically?
- 4. Compare and contrast isomorphisms and homomorphisms.
- 5. "For every normal subgroup there is a homomorphism, and for every homomorphism there is a normal subgroup." Explain the (precise) basis for this (vague) statement.

Reading Questions, Chapter 11

- 1. How many abelian groups are there of order $200 = 2^3 5^2$?
- 2. How many abelian groups are there of order $729 = 3^6$?
- 3. Find a subgroup of order 6 in $\mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3$.
- 4. It can be shown that an abelian group of order 72 contains a subgroup of order 8. What are the possibilities for this group?
- 5. What is a principal series of the group G?

Reading Questions, Chapter 10-06

- 1. What is the difference between the orthogonal group and the special orthogonal group?
- 2. What is a space group, and what are its two parts?
- 3. What is a lattice?
- 4. Describe the difference between a public key and a private key.
- 5. What mathematics makes the RSA cryptosystem work?

- 1. Give an informal description of a group action.
- 2. Describe the class equation.
- 3. What are the groups of order 49?
- 4. How many switching fuctions are there with 5 inputs?
- 5. The "Historical Note" mentions the proof of Burnside's Conjecture. How long was the proof?

Reading Questions, Chapter 13

- 1. State Sylow's First Theorem.
- 2. How many groups are there of order 69? Why?
- 3. Give two descriptions, different in character, of the normalizer of a subgroup.
- 4. What's all the fuss about Sylow's Theorems?
- 5. Name one of Sylow's academic great-gre