Math 290 Name: %’e Dr. Beezer
Exam 6 ﬁ Spring 2012
Chapter LT

Show all of your work and explain your answers fully. There is a total of 100 possible points.
Be certain that all computations can be justified by definitions and theorems we have covered. You may use Sage
to row-reduce matrices and solve systems of equations.

1. Verify that the function below is a linear transformation. Py is the vector space of polynomials with degree at
most 1 and Mg is the vector space of 1 x 2 mafrices. {15 points)
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2. The linear transformation § is invertible {(you may assume this). Compute three pre-images for 5, one for each

of the standard unit vectors of C*. Use these pre-images to construct the inverse linear transformation, S7%.
(20 points)
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3. Consider the linear transformation K whose domain is My, the vector space of 2 x 2 matrices and whose
codomain is P, the vector space of polynomials with degree at most 2. (35 points)
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(a) Compute the kernel of R, K(R). §‘g EC’& b
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{b) Compute the 1emge of R, R{(R) . o . ‘
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(d) 1s R surjective? Why or why not?
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(e} If R is not m}c,(‘tlve find two different nonzero vectors, x and y, such that R (x) = R{y).
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(fy If R is not surjective, find a vector w in the codomain of R that is not in the range of R.
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4. Suppose U is a vector space and p € € is a scalar. Define a function T,: U — U by T, (u) = pu. Prove that T,
is a linear transformation. Be sure to provide justification/explanation for each step of your proof. (15 points)
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5. Suppose that B = {uy, ug, us, ..., u,} is a basis of the vector space U/, and that § and T are linear trans-
formations that both have U/ as their domain. Suppose further that 5 and T agree on the basis ~ that is,
Slu) =T (u;) for 1 < < n. Prove that § and T are the same function. (15 points)
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