Name:

Show *all* of your work and *explain* your answers fully. There is a total of 100 possible points. Use Sage only to row-reduce matrices and include these computations in your answers.

1. Determine if the vector **y** is in the span of the set S, $\langle S \rangle$. (15 points)

$$\mathbf{y} = \begin{bmatrix} 2\\-11\\1\\7 \end{bmatrix} \qquad S = \{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \mathbf{v}_4, \, \mathbf{v}_5, \, \mathbf{v}_6\} = \left\{ \begin{bmatrix} 1\\0\\-2\\0 \end{bmatrix}, \, \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}, \, \begin{bmatrix} 1\\-5\\3\\5 \end{bmatrix}, \, \begin{bmatrix} -1\\-4\\3\\2 \end{bmatrix}, \, \begin{bmatrix} 2\\4\\-5\\-2 \end{bmatrix}, \, \begin{bmatrix} 4\\6\\5\\-4 \end{bmatrix} \right\}$$

 Determine if the sets of vectors below are linearly independent or not. Be sure to provide sufficient justification. (20 points)

(a)
$$\left\{ \begin{bmatrix} 1\\0\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0\\-1\\-3 \end{bmatrix}, \begin{bmatrix} 7\\2\\4\\0\\1 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1\\-2\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} -6\\1\\-3\\1\\2 \end{bmatrix}, \begin{bmatrix} -8\\5\\-3\\1\\0 \end{bmatrix} \right\}$$

3. The set S below is the same as in Question 1. Find a linearly independent set T so that $\langle T \rangle = \langle S \rangle$. (10 points)

$$S = \{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \mathbf{v}_4, \, \mathbf{v}_5, \, \mathbf{v}_6\} = \left\{ \begin{bmatrix} 1\\0\\-2\\0 \end{bmatrix}, \, \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}, \, \begin{bmatrix} 1\\-5\\3\\5 \end{bmatrix}, \, \begin{bmatrix} -1\\-4\\3\\2 \end{bmatrix}, \, \begin{bmatrix} 2\\4\\-5\\-2 \end{bmatrix}, \, \begin{bmatrix} 4\\6\\5\\-4 \end{bmatrix} \right\}$$

4. The vector \mathbf{y} below is the same as in Question 1. Find a linear combination of the vectors in the set set T (that you found in the previous question) that equals \mathbf{y} . Comment thoughtfully on the relationship between the results in Question 1, the previous question, and this question. (10 points)

$$\mathbf{y} = \begin{bmatrix} 2\\ -11\\ 1\\ 7 \end{bmatrix}$$

5. Find a linearly independent set R whose span is the null space of the matrix A below. In other words, R will be linearly independent and $\langle R \rangle = \mathcal{N}(A)$. (10 points)

Γ1	-3	7	-4	4]
1	-2	3	-2	1
0	2	-8	5	-8
0	$^{-1}$	4	2	-5

6. Given two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ define a new operation, called *subtraction*, by $[\mathbf{u} - \mathbf{v}]_i = [\mathbf{u}]_i - [\mathbf{v}]_i$, $1 \le i \le m$. Prove that subtraction is not really anything new (because we can accomplish subtraction with operations we already have) by showing that $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-1)\mathbf{v}$. (10 points)

7. Referring to the result about subtraction from the previous question, prove that for $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, $\alpha (\mathbf{u} - \mathbf{v}) = \alpha \mathbf{u} - \alpha \mathbf{v}$. (10 points)

8. Suppose that $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{C}^m$. Prove that $\langle \{\mathbf{v}_1, \mathbf{v}_2\} \rangle = \langle \{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 - \mathbf{v}_2\} \rangle$. (10 points)