Chapter V
Show all of your work and explain your answers fully. There is a total of 100 possible points.
Use Sage only to row-reduce matrices and include these computations in your answers.

1. Determine if the vector \mathbf{y} is in the span of the set $S,\langle S\rangle$. (15 points)

$$
\mathbf{y}=\left[\begin{array}{c}
2 \\
-11 \\
1 \\
7
\end{array}\right] \quad S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-5 \\
3 \\
5
\end{array}\right],\left[\begin{array}{c}
-1 \\
-4 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
-5 \\
-2
\end{array}\right],\left[\begin{array}{c}
4 \\
6 \\
5 \\
-4
\end{array}\right]\right\}
$$

2. Determine if the sets of vectors below are linearly independent or not. Be sure to provide sufficient justification. (20 points)
(a) $\left\{\left[\begin{array}{c}1 \\ 0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ 0 \\ -1 \\ -3\end{array}\right],\left[\begin{array}{l}7 \\ 2 \\ 4 \\ 0 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{c}1 \\ -2 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-6 \\ 1 \\ -3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-8 \\ 5 \\ -3 \\ 1 \\ 0\end{array}\right]\right\}$
3. The set S below is the same as in Question 1. Find a linearly independent set T so that $\langle T\rangle=\langle S\rangle$. (10 points)

$$
\left.S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\}=\left\{\begin{array}{c}
1 \\
0 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-5 \\
3 \\
5
\end{array}\right],\left[\begin{array}{c}
-1 \\
-4 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
-5 \\
-2
\end{array}\right],\left[\begin{array}{c}
4 \\
6 \\
5 \\
-4
\end{array}\right]\right\}
$$

4. The vector \mathbf{y} below is the same as in Question 1. Find a linear combination of the vectors in the set set T (that you found in the previous question) that equals \mathbf{y}. Comment thoughtfully on the relationship between the results in Question 1, the previous question, and this question. (10 points)

$$
\mathbf{y}=\left[\begin{array}{c}
2 \\
-11 \\
1 \\
7
\end{array}\right]
$$

5. Find a linearly independent set R whose span is the null space of the matrix A below. In other words, R will be linearly independent and $\langle R\rangle=\mathcal{N}(A)$. (10 points)

$$
\left[\begin{array}{ccccc}
1 & -3 & 7 & -4 & 4 \\
1 & -2 & 3 & -2 & 1 \\
0 & 2 & -8 & 5 & -8 \\
0 & -1 & 4 & 2 & -5
\end{array}\right]
$$

6. Given two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ define a new operation, called subtraction, by $[\mathbf{u}-\mathbf{v}]_{i}=[\mathbf{u}]_{i}-[\mathbf{v}]_{i}, 1 \leq i \leq m$. Prove that subtraction is not really anything new (because we can accomplish subtraction with operations we already have) by showing that $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-1) \mathbf{v}$. (10 points)
7. Referring to the result about subtraction from the previous question, prove that for $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, $\alpha(\mathbf{u}-\mathbf{v})=\alpha \mathbf{u}-\alpha \mathbf{v}$. (10 points)
8. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{C}^{m}$. Prove that $\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle=\left\langle\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}\right\rangle$. (10 points)
