Chapter VS
Show all of your work and explain your answers fully. There is a total of 100 possible points.
Use Sage only to row-reduce matrices or to solve systems of equations, and be sure to detail your input and output.

1. Determine if the set R below is a linearly independent set in P_{2}, the vector space of polynomials of degree at most two. (15 points)

$$
R=\left\{x^{2}+3 x-5,3 x^{2}-8 x+2\right\}
$$

2. Find a spanning set for the subspace Y of M_{22}. (15 points)

$$
Y=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{22} \right\rvert\, a=4 c, b=-2 d\right\}
$$

3. For the matrix A below, compute the rank, nullity and the dimension of the column space. (5 points)

$$
A=\left[\begin{array}{ccccccc}
1 & -1 & 6 & 0 & 1 & -1 & -3 \\
0 & 1 & -3 & 2 & -5 & 5 & -2 \\
-2 & 0 & -6 & -3 & 5 & -5 & 8 \\
0 & 1 & -3 & 2 & -5 & 5 & -2 \\
0 & -2 & 6 & -3 & 7 & -7 & 2
\end{array}\right]
$$

4. Consider the subspace W of P_{3} (the vector space of all polynomials of degree at most 3), and the four elements $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{y}$ of W. You may assume the following: W is a subspace, all four elements below are in W (except for when you do part (a)), and $B=\{\mathbf{u}, \mathbf{y}\}$ is a basis of W. (35 points)

$$
\begin{aligned}
& W=\left\{a+b x+c x^{2}+d x^{3} \mid 7 a+5 b-4 c+3 d=0,4 a+3 b-2 c+2 d=0\right\} \\
& \mathbf{u}=3+2 x+4 x^{2}-5 x^{3} \quad \mathbf{v}=-1+4 x+x^{2}-3 x^{3} \quad \mathbf{w}=-5+2 x-4 x^{2}+3 x^{3} \quad \mathbf{y}=2+6 x+5 x^{2}-8 x^{3}
\end{aligned}
$$

(a) Verify that one of $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{y}$ is an element of W (your choice, just one).
(b) Does the set $T=\{\mathbf{w}\}$ span W ? Why or why not?
(c) Is the set $R=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ a linearly independent subset of W ? Why or why not?
(d) Does the set $T=\{\mathbf{u}, \mathbf{w}\}$ span W ? Why or why not?
5. Suppose that V is a vector space. Prove that the zero vector of V is unique. (15 points)
6. Suppose that A is an $m \times m$ nonsingular matrix and that $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly independent subset of \mathbb{C}^{m}. Prove that $T=\left\{A \mathbf{v}_{1}, A \mathbf{v}_{2}, \ldots, A \mathbf{v}_{p}\right\}$ is a linearly independent subset of \mathbb{C}^{m}. (15 points)

