Chapter R
Show all of your work and explain your answers fully. There is a total of 100 possible points.
You may use Sage to row-reduce matrices, solve systems of equations, compute determinants and compute eigenstuff. Linear transformation routines may not be used as justification.

1. Compute a matrix representation of the linear transformation $T$ with domain $P_{1}$, the vector space of polynomials with degree at most 1 , and codomain $M_{13}$, the vector space of $1 \times 3$ matrices. Then illustrate the Fundamental Theorem of Matrix Representation (FTMR) by using the representation to compute $T(3-6 x)$. (No credit will be given for using other methods to compute this output of the linear transformation.) (15 points)
$T: P_{1} \rightarrow M_{13}, \quad T(a+b x)=\left[\begin{array}{lll}2 a+b & a-4 b & 5 a+6 b\end{array}\right]$
2. For the linear transformation below, find a basis of the vector space $P_{2}$ so that the matrix representation of $S$ relative to the basis is a diagonal matrix. Give the ensuing representation as well. ( 20 points)
$S: P_{2} \rightarrow P_{2}, \quad S\left(a+b x+c x^{2}\right)=(-12 a-4 b+14 c)+(9 a+6 b-9 c) x+(-9 a-4 b+11 c) x^{2}$
3. Consider the linear transformation $R$ with domain $M_{12}$, the vector space of $1 \times 2$ matrices, and codomain $P_{1}$, the vector space of polynomials with degree at most 1. (35 points)
$R: M_{12} \rightarrow P_{1}, \quad R\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)=(3 a+7 b)+(2 a+5 b) x$
(a) Build a matrix representation of $R$ relative to the bases $B=\left\{\left[\begin{array}{ll}3 & 2\end{array}\right],\left[\begin{array}{ll}4 & 3\end{array}\right]\right\}$ and $C=\{6+5 x, 1+x\}$.
(b) $R$ is invertible (you may assume this). Compute the matrix representation of $R^{-1}$ relative the bases $C$ and $B$ given in part (a).
(c) Consider two new bases, $X=\left\{\left[\begin{array}{ll}7 & 3\end{array}\right],\left[\begin{array}{ll}2 & 1\end{array}\right]\right\}$ and $Y=\{1+2 x,-1-x\}$. Form the change-of-basis matrix, $C_{B, X}$, from basis $B$ to basis $X$.
(d) Compute the matrix representation of $R$ relative to the bases $X$ and $Y$ (in part (c)) by using the representation from part (a) and change-of-basis matrices. No credit will be given for building this representation via the definition of a matrix representation.
4. We saw the following linear transformation on the previous exam. Suppose $U$ is a vector space and $\rho \in \mathbb{C}$ is a scalar. Define the linear transformation $T_{\rho}: U \rightarrow U$ by $T_{\rho}(\mathbf{u})=\rho \mathbf{u}$. Describe, with justification, a matrix representation of $T$. ( 15 points)
5. Suppose that $U$ is a vector space, $B$ is a basis of $U, T: U \rightarrow U$ is a linear transformation, and $\mathbf{u} \in U$ is an eigenvector of $T$. Prove that the vector representation $\rho_{B}(\mathbf{u})$ is an eigenvector for the matrix representation $M_{B, B}^{T} .(15$ points $)$
