Math 290 Exam 7 Chapter R

Show *all* of your work and *explain* your answers fully. There is a total of 100 possible points. You may use Sage to row-reduce matrices, solve systems of equations, compute determinants and compute eigenstuff. Linear transformation routines may not be used as justification.

1. Compute a matrix representation of the linear transformation T with domain P_1 , the vector space of polynomials with degree at most 1, and codomain M_{13} , the vector space of 1×3 matrices. Then illustrate the Fundamental Theorem of Matrix Representation (FTMR) by using the representation to compute T(3-6x). (No credit will be given for using other methods to compute this output of the linear transformation.) (15 points)

 $T: P_1 \to M_{13}, \quad T(a+bx) = \begin{bmatrix} 2a+b & a-4b & 5a+6b \end{bmatrix}$

2. For the linear transformation below, find a basis of the vector space P_2 so that the matrix representation of S relative to the basis is a diagonal matrix. Give the ensuing representation as well. (20 points)

 $S: P_2 \to P_2, \quad S(a+bx+cx^2) = (-12a-4b+14c) + (9a+6b-9c)x + (-9a-4b+11c)x^2$

3. Consider the linear transformation R with domain M_{12} , the vector space of 1×2 matrices, and codomain P_1 , the vector space of polynomials with degree at most 1. (35 points)

 $R: M_{12} \to P_1, \quad R([a \ b]) = (3a+7b) + (2a+5b) x$

(a) Build a matrix representation of R relative to the bases $B = \{ \begin{bmatrix} 3 & 2 \end{bmatrix}, \begin{bmatrix} 4 & 3 \end{bmatrix} \}$ and $C = \{6 + 5x, 1 + x\}.$

(b) R is invertible (you may assume this). Compute the matrix representation of R^{-1} relative the bases C and B given in part (a).

(c) Consider two new bases, $X = \{ \begin{bmatrix} 7 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 1 \end{bmatrix} \}$ and $Y = \{1 + 2x, -1 - x\}$. Form the change-of-basis matrix, $C_{B,X}$, from basis B to basis X.

(d) Compute the matrix representation of R relative to the bases X and Y (in part (c)) by using the representation from part (a) and change-of-basis matrices. No credit will be given for building this representation via the definition of a matrix representation.

4. We saw the following linear transformation on the previous exam. Suppose U is a vector space and $\rho \in \mathbb{C}$ is a scalar. Define the linear transformation $T_{\rho}: U \to U$ by $T_{\rho}(\mathbf{u}) = \rho \mathbf{u}$. Describe, with justification, a matrix representation of T. (15 points)

5. Suppose that U is a vector space, B is a basis of $U, T: U \to U$ is a linear transformation, and $\mathbf{u} \in U$ is an eigenvector of T. Prove that the vector representation $\rho_B(\mathbf{u})$ is an eigenvector for the matrix representation $M_{B,B}^T$. (15 points)