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Modules

Introduction

In class we have studied the mathematical structure of vector spaces which are

defined for fields and abelian groups. A module is generalization of a vector space in

that a module is defined for a Ring and an abelian group. With this comparatively

relaxed definition of modules we are able to learn a lot about the structure and be-

havior of other mathematical structures.

Preliminary Definitions and Theorems

With a new mathematical structure comes new definitions and theorems. While these

definitions and theorems will feel similar, or exactly the same in some cases, as those

for other mathematical structures, they are necessary in order to proceed.

Definition 1 Let R be a ring and M an ableian group (with operation +). M is

a left R-module if for every r in R and every m in M there exists rm in M subject

to:

• r(a+ b) = ra+ rb

• r(sa) = (rs)a

• (r + s)a = ra+ sa

for all a, b in M and all r, s in R.
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Right modules are defined similarly, where the elements of R are multiplied on

the right of elements from M . If R is a ring with unity element 1 and if 1m = m

for all m in M , then M is a unital R-module. If R is a ring with unity, then it is

assumed that all R- modules are unital. Note: From here on, unless otherwise stated,

an R-module is a left R-module.

Examples

1. Since a ring is defined to be an abelian group, any ring is a module over itself.

2. Any abelian group is a module over Z.

3. If R is a field, a unital R-module is a vector space over R.

4. Let R be a ring, I a left ideal of R. Let M contain all of the cosets of I with

representatives from R. Then M is an R-module with operations defined by

• (r + I) + (s+ I) = (r + s) + I

• r(s+ I) = rs+ I for r, s ∈ R.

Proof Let a, b ∈ R. Then the cosets a + I and b + I ∈ M . (a + I)(b + I) =

(a+ b) + I = (b+ a) + I = (b+ I)(a+ I) since R is an abelian group. Hence M

is an abelian group. Moving on to the three properties of modules, let r and s

be in R as well.

• r((a + I) + (b + I)) = r(a + b) + I = (ra + rb) + I = (ra + I) + (rb + I)

since elements of R distribute.

• r(sa + I) = rsa + I = (rs)a + I = (rs)(a + I) since multiplication of

elements of R is associative.

• (r + s)(a + I) = (r + s)a + I = (ra + sa) + I = (ra + I) + (sa + I) since

elements of R distribute.

If I is a two sided ideal, then M is the quotient ring R/I.
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Definition 2 If M is a left R-module and a right S-module and if r(ms) = (rm)s

for all r in R, s in S, and m in M then M is a R,S-bimodule.

Example Using the previous example of a ring over itself as a module, it is plain

to see that any ring will be a bimodule over itself, since rings are defined to be

associative.

Definition 3 An abelian subgroup S of an R-module M is a submodule of M

if S is also an R-module. Which is to say, when r ∈ R and s ∈ S then rs ∈ S.

Example A nice example of a submodule comes from our now prototypical ex-

ample of a ring R over itself. Any left ideal I of R is a submodule of R when thought

of as a left R-module. Similarly a right ideal is a submodule of R when thought of

as a left R-module and a two sided ideal is a submodule of R when thought of as an

R,R-bimodule.

Definition 4 Let R be a ring, M be an R-module, and N be a submodule of M .

The quotient module M/N is the group of cosets of N with representatives from

M with operations defined as

• (a+N) + (b+N) = (a+ b) +N

• r(a+N) = ra+N

where r ∈ R and a, b ∈M .

As with other mathematical structures, there are homormorphisms of modules

and the theorems and definitions that come along with them.

Definition 5 Given two R-modules M and N , a function φ : M → N is a module

homomorphism if for all a, b ∈M and r ∈ R

• φ(a+ b) = φ(a) + φ(b)

• φ(ra) = rφ(a)

Definition 6 If M and N are two R-modules and φ : M → N is a ring homo-
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morphism, the kernal of φ (ker φ) is the set

kerφ = {m ∈M |φ(m) = 0}

Definition 7 If M and N are two R-modules and φ : M → N is a ring homo-

morphism, the image of φ is the set {φ(m)|m ∈M}

kerφ is a submodule of M and the image of φ is a submodule of N . The proof

of these statements is trivial. Similar to homomorphisms of other structures, φ is

injective if φ is one to one (equivalently kerφ is trivial) and φ is surjective if the

image of φ is N . If φ is both injective and surjective then we say φ is bijective and φ

is a module isomorphism.

We also now define the canonical projection. Also given an R-module M and

a submodule of M , N , the canonical projection φ : M → M/N is the mapping

φ(m) = m+N .

As alluded to earlier, we have the module verisons of the three group isomorphism

theorems from Judson [2].

Theorem 1 (Ice-1) If M , N are R-modules and φ : M → N is a surjective

module homomorphism and kerφ = K then

N ∼=
M

K

Proof Using the first isomorphism theorem for groups, we have the group isomor-

phism ρ : M/K → N defined by ρ(m + K) = φ(m). All we need to do is show that

this group isomorphism is also a module isomorphism. Let m be in M and r be in

R. Then

ρ(r(m+K)) = ρ(rm+K) = φ(rm) = rφ(m) = rρ(m+K).
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The operation (+) is preserved since ρ is a group isomorphism. Hence ρ is a module

isomorphism and we are done.

Before the next isomorphism theorem we note that the intersection of two sub-

modules of a given module is a submodule and state a quick definition. The sum of

two R-modules M and N is the set

M +N = {m+ n|m ∈M,n ∈ N}.

Theorem 2 (Ice-2) If M,N are two submodules of some R-module L then

(M +N)

M
∼=

N

(M ∩N)

Proof Again we can call on the equivalent group isomorphism theorem from Judson

[2] that gives us the surjective group homormorphism φ : N → (M + N)/N defined

by φ(n) = n+M with kerφ = M ∩N . All we need to do is prove that φ is a module

homomorphism and since φ is a group homomorphism we already know the operation

(+) is preserved. So consider r ∈ R and n ∈ N . Then

φ(r(n+M)) = φ(rn+M) = rn = rφ(n+M)

and we are done.

Theorem 3 (Ice-3) If L,M,N are R-modules with L a submodule of N and N

a submodule of M .

M

N
∼=
M/L

N/L

Proof For a third time we call on the equivalent group isomorphism theorem that

gives us a group homomorphism φ : M/L → M/N defined by φ(mL) = mN with

kerφ = N/L. Consider r ∈ R and m ∈M . Then

φ(r(m+ L)) = φ(rm+ L) = rm+N = r(m+N) = rφ(m+ L)
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and we are done.

Definition 8 An R-module M is cyclic if an element m̂ ∈ M such that every

m ∈M can be written m = rm̂ for some r from R. Notationally: 〈m̂〉 = M .

The Structure of Modules over a Principal Ideal

Domain

Definition 9 If M is an R-module, M1, . . . ,Mn are submodules of M such that

Mi ∩ (M1 + . . . + Mi−1 + Mi+1 + . . . + Mn) = 0, and M = M1 + . . . + Mn then M is

the internal direct sum of the Mi’s. Notationally: M = M1 ⊕ · · · ⊕Mn

Similar to direct products of groups, constructing a new module as the direct sum

of the Mi’s is the external direct sum.

Definition 10 An R-module M is finitely generated if there is a set {bi ∈

M |1 ≤ i ≤ m} and every m in M can be expressed as m = r1b1 + r2b2 + · · · + rnbn

where ri ∈ R.

It is important to note that generating a module is not limited to finite sets. A

set of generating elements of a module M always exists since M itself is a generating

set.

Definition 11 A subset {m1, . . . ,mn} is a basis of an R-module M if every m

in M can be expressed as m = r1m1, r2m2, . . . , rnmn where ri ∈ R for 1 ≤ i ≤ n. If

{x1, . . . , xk} is another set that generates M , then k ≥ n.

Definition 12 If a module M has basis {m1, . . . ,mn} then the rank of M is n.

Sometimes we say rank M or has rank n.

Definition 13 An unital R-module M is free if M has a basis (either infinite or

finite).

Given a basis, we are able to construct a free module with the method described

pg. 42 of Rowen [4].

The following Theorems and proofs come from Gray [1].

Theorem 4 If M is an R-module, then M is isomorphic to a quotient module of
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a free module.

Proof Let S be a subset of M that generates M and create a free module F on

S as the method from Rowen [4]. Define a module homomorphism φ : F → M by

φ(s) = s ∈M . Since S generates M , φ is surjective and hence M ∼= F/ kerφ.

With this theorem in hand we are now on our way to proving an important

structural theorem for modules but we need a few more lemmas and theorems before

we get there.

Lemma 1 If {m1, . . . ,mn} is a basis for a free R-module M where R is a principal

ideal domain and s1 =
∑n

i=1 αimi, then a basis {s1, s2, . . . , sn} can be formed if and

only if the αi’s are relatively prime.

Proof

(⇒)

Suppose M = Rs1⊕· · ·⊕Rsn and suppose αi = dβi for 1 ≤ i ≤ n. Since s1 6= 0, d 6= 0.

Then d(
∑
βimi + Rs1) = s1 + Rs1 = Rs1. However, M/Rs1 is free with basis

{(s2 +Rs1), . . . , (sn +Rs1)}, so that
∑
βimi +Rs1 = Rs1. Thus

∑
βiri = r

∑
αimi,

but M is free, hence βi = rαi = rdβi for 1 ≤ i ≤ n with at least one β1 6= 0. Therefore

rd = 1 and d|1, so 1 is the gcd of the αi’s.

(⇐)

For the other direction, we use induction on the rank of M . If the gcd of α1 is 1, then

Rα1 = R, α must be a unity, and α1m is a basis. Assume n > 1 and that the result

holds for any module of rank < n. Let s1 =
∑n

i=1 αim1. Rα1 + · · ·+Rαn is an ideal

of R and hence principal. Let Rα1 + · · · + Rαn = Rd where dβi = αi for 2 ≤ i ≤ n.

Then R = Rβ2 + · · ·+Rβn and if t2 =
∑n

i=2 βimi, then there is a basis {t2, . . . tn} for

Rm1 + · · ·Rmn and {m1, t2, . . . tn} is a basis for M with s1 = α1m1 +dt2. If gcd(α, d)

is 1, then we need to show there is a s2 such that M = Rs1 ⊕Rs2.

Since R is a PID we can write 1 = xα + yd for x, y ∈ R. Let s2 = −ym1 + xt2.

This gives us

m1 = xα1m1 + ydm1 + xdt2 − xdt2 = xs1 − ys2
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and

t2 = xα1t2 + ydt2 + yα1m1 − yα1m1 = ys1 + α1s2.

Thus Rs1 +Rs2 = Rm1 +Rt2 = M .

Now suppose s ∈ Rs1 ∩ Rs2. Then s = u(α1m1 + dt2) = v(−ym1 + xt2). Since

{m1, t2} is a basis for a free module uα1 = −vy and ud = vx. Thus u = u(xα1+yd) =

−vyx+ vyx = 0.

As a corollary to this lemma, we get a property of modules that is virtually the

same as a property of vector spaces.

Corollary 1 If M is a free module of rank m over a principal ideal domain, then

any basis of M has m elements.

Theorem 5 Let M be an R-module with finite rank m where R is a principal

ideal domain. If N is a submodule of M , then rank N = n ≤ m.

Proof Let S = {x1, . . . , xm} be a minimal generating set of M , F the free module

with S as a basis and ρ : F →M defined as the map in the previous theorem. Since N

can be expressed as the quotien module of a submodule of F , namely {f ∈ F |ρ(f) ∈

N}, we can consider M to be free. We induct on the rank of M . If m = 1, M is

isomorphic to R and the rank of any submodule of R is 0 or 1. Thus rank N ≤ 1.

Let A = {a ∈ R|x− ax1 ∈ Rx2 + · · ·+Rxm}. A is an ideal of R, so A = Ra1 for

some a1 ∈ A. Let y − a1x1 ∈ Rx2 + · · ·+Rxm and N1 = N ∩ (Rx2 + · · ·+Rxm).

Our claim is that N = N1 + Ry. Suppse r1x1 + · · · + rmxm ∈ N . Then r1 ∈ A such

that r1 = ra1, r ∈ R. But then

r1x1+· · ·+rmxm−ry = r1x1+· · · rmxm−r(y−a1x1)−r1x1 ∈ N∩(Rx2+· · ·Rxm) = N1

so that N ⊂ N1 + Ry. However, clearly N1 + Ry ⊂ N . N1 is a submodule of

Rx2 + · · ·Rxm, a module of rank m− 1. So by induction rank N1 = n− 1 ≤ m− 1

and hence rank N ≤ m.

Corollary 2 Let R be a principal ideal domain. If M is a free R-module with
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rank m then every submodule N of M is free and has rank less than or equal to m.

Proof From the previous theorem, N has a minimal generating set S = {x1, . . . , xn}.

Form a free module F with S as a basis and let ρ : F → N be defined as earlier. If

ker ρ = {0}, N is free. Suppose 0 6= x =
∑
rixi ∈ ker ρ. Let Rd = Rr1 + · · · + Rrn.

Not all ri are zero, so d 6= 0. Let dai = ri for 1 ≤ i ≤ n such that R = Ra1+ · · ·+Ran.

Let x′ =
∑
aixi. So ρ(x′) ∈M , so let ρ(x′) =

∑
ciyi, where {y1, . . . ym} is a basis for

M . Then
∑
dciyi = d(ρ(x′)) = ρ(x) = 0. Since M is free, dci = 0 for 1 ≤ i ≤ n and

ci = 0 for 1 ≤ i ≤ n. Thus ρ(x′) = 0. We can complete {x′} to a basis {x′, x′2, . . . , x′n}

for F . Letting F ′ = Rx′2 + · · ·Rx′n we see that ρ(F ′) = N so that N is generated

by a set of n− 1 elements, contradicting the minimaility of {x1, . . . , xn}. Hence ker ρ

must be zero and N is free.

Theorem 6 Let R be a principal ideal domain. If M is a free R-module of rank

m and N is a submodule of M , then there is a basis {a1, a2, . . . , am} of M and bi ∈ R

for 1 ≤ i ≤ m such that

• bi|bi+1 for 1 ≤ i ≤ m with a bn 6= 0 such that bj = 0 where n+ 1 ≤ j ≤ m.

• {b1a1, . . . , bnan} is a basis for N

The proof of this theorem is very involved and is therefore omitted. However, if

the reader is curious the proof is on pages 51-53 of Gray[1].

Theorem 7 If R is a principal ideal domain then a finitely generated R-module

is the direct sum of a finite number of cyclic modules.

Proof Let M be a finitely generated R module and let ρ : F → M be the

surjective map, where F is free. Then F has a basis {f1, f2, . . . , fn} such that ker ρ

has a basis {a1f1, a2f2, . . . , amfm} where ai divides ai+1 for 1 ≤ i ≤ m − 1. If some

ai|1 then {f1, . . . , fn} ⊂ ker ρ and so {f1, . . . , fn} can be excluded from the bases.

Hence

M ∼=
Rf1 ⊕ · · · ⊕Rfn

R/Ra1 ⊕ · · · ⊕R/Ran
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Let φ : Rf1 ⊕ · · · ⊕Rfn → R/Ra1 ⊕ · · · ⊕R/Ran be the mapping defined by

φ(r1f1 + · · ·+ rnfn) = (r1 +Ra1) + · · ·+ (rn +Ran).

Suppose

φ(r1f1 · · · rnfn) = Ra1 + · · ·+Ra1 = 0

⇒ ri = siai for some si ∈ R and 1 ≤ i ≤ n. Hence rifi ∈ Rdifi. Any element from

Ra1f1⊕· · ·⊕Ranfn is mapped to the zero element, hence kerφ = Ra1f1⊕· · ·⊕Ranfn.

The surjectivity of φ is easy to see and is omitted.

Hence

M ∼=
Rf1 ⊕ · · · ⊕Rfn

Ra1f1 ⊕ · · · ⊕Ranfn
∼=

R

Ra1
⊕ · · · ⊕ R

Ran
.

Where a1 6 |1 and if m < n, then ai = 0 for m + 1 ≤ i ≤ n. The only thing left to

show is that each R/Rai is cyclic however this is trivial since 1 + Rai ∈ R/Rai for

1 ≤ i ≤ n.

As corollaries to this theorem we get the Fundamental Theorem of Finitely Gen-

erated Abelian Groups and the Fundamental Theorem of Finite Abelian Groups from

Judson [2].

Corollary 3 (Fundamental Theorem of Finitely Generated Abelian Groups)

Every finite abelian group is isomorphic to the direct sum of cyclic groups of the form

Zp
α1
1
⊕ Zp

α2
2
⊕ · · · ⊕ Zpαnn ⊕ Z⊕ · · · ⊕ Z

where αi ∈ Z and the pi’s are not necessarily distinct primes.

Corollary 4 (Fundamental Theorem of Finite Abelian Groups)

Every finite abelian group is the direct sum of cyclic groups of the form

Zp
α1
1
⊕ Zp

α2
2
⊕ · · · ⊕ Zpαnn

where αi ∈ Z and the pi’s are not necessarily distinct primes.
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Conclusion

The generalization from vector spaces to modules yields unexpected results. We find

that there are quite a few similarities but by wading through familiar definitions

and theorems for modules and with just a few more complicated results, we are able

to achieve a fundamental theorem about their structure and as a result we get two

important theorems from group theory as corollaries.
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