
Relational Algebra:

a Brief Introduction

Kyle R. Wenholz

University of Puget Sound

April 17, 2012

kwenholz 1

Contents

1 Introduction 2

1.1 Motivation . 2

2 The Relational Algebra 3

2.1 Elements . 3

2.2 Operations . 4

2.3 Derived Operations . 6

2.3.1 Join . 6

2.3.2 Division . 6

2.3.3 Extending Relational Algebra . 7

3 Query Optimization 8

3.0.4 Restriction 1 . 10

3.0.5 Restriction 2 . 10

3.0.6 Restriction 3 . 10

3.0.7 Combining the Restrictions . 12

4 Conclusion 12

kwenholz 2

1 Introduction

To the data-hungry, the world is composed of infinitely many data points waiting to

be observed. In order to make sense and use of this data computer scientists find it

helpful to devise mathematical structures for describing its storage and manipulation.

This paper will examine the most popular of these: the relational algebra first proposed

by E.F. Codd in 1970 [2]. While it is not necessary to have a background in Abstract

Algebra, familiarity and exposure to various algebras and their structures only makes

relational algebra more sensible. Relational algebra is regarded as an algebra in large

part because of its roots in first-order logic and set theory.

We will begin our discussion with a motivating example in Section 1.1 to appreci-

ate the importance of approaching data rigorously. Section 2 will discuss the objects,

operations, general terms, and basic results used in relational algebra. Our discussion

concludes in Section 3 with a discussion of the importance this algebra plays in query

optimization.

1.1 Motivation

Suppose we are presented with the task of organizing a vast amount of data. There are

many ways to accomplish this task and many reasons for choosing each. Our solution

may be hardware dependent to improve speed and efficiency in the machine, or we may

opt for a model easily understood by humans but complex and difficult to implement

in a computer. Before E.F. Codd’s relational algebra, many solutions were proposed

(and some are still in use for various reasons) including tree structures much like a file

system and network based models behaving as relationships between entities [1]. The

major advancements of Codd’s day came with the description of fast set-theoretic-like

data structures.

Consider the task of organizing data about honey bees. We know the names, date of

birth, and hive “address” for each bee. Each hive has an address and queen’s name. This

information is organized in Figure 1 for future reference. We need to store potentially

massive amounts of this data, be able to ask questions about the data and compute

answers, and have a way of representing our system to experts and non-experts alike.

With programs like Microsoft Excel, it may be apparent how we might organize all of the

data. We now examine how relational algebra deals with these tasks for general data,

not just bees.

kwenholz 3

2 The Relational Algebra

2.1 Elements

The element of relational algebra is, unsurprisingly, a relation. A relation is a subset of

the Cartesian product of some number of sets [3](Definition 1). Note this implies each

element is uniquely identified by its specific contents.

Definition 1. Cartesian Product: Given sets D1, D2, . . . , Dn, we denote

D1 ×D2 × · · · ×Dn = {(d1, d2, . . . , dn)|d1 ∈ D1, d2 ∈ D2, . . . , dn ∈ Dn}

as the Cartesian product (×) of the sets D1, D2, . . . , Dn. The elements of this set are

referred to as n − tuples, or just tuples. As in the literature, we will use the terms

Cartesian product and cross product synonymously.

It is convenient to think of relations as spreadsheets, where each column represents

values from a set and each row itself a single element of the cross product. This makes

the information easy to visualize and explain. Columns are called attributes and rows

are called tuples. We denote a relation R with attributes {A,B,C} as R(A,B,C),

where A,B,C are sets. The list of attributes is called a schema and generally order

does matter. Relation 1 uses our bee example to make a relation for bees. We may think

of these relations recursively, with tuples as a “single entry” relation. This concept will

help as we begin to explore the various operations of the relational algebra.

Name DateOfBirth HiveAddress

Joe 10/20/1901 222 Smokey Street
Sally 3/4/2001 321 Pooh Circle
Frank 10/20/1901 321 Pooh Circle

Relation 1: : An example of Bee(Name,DateOfBirth,HiveAddress).

Bees Hive

Name Address
Date of Birth Queen Name
Hive Address

Figure 1: The basic bee information

kwenholz 4

2.2 Operations

Relational algebra boils down to six basic operations (depending on who you ask)[3][4].

Several of these are closely related to operations in set theory, but relations are not

sets and must be treated with special care. Still, we will see a close relationship with

set theory throughout our work. All of the following operations were developed in

Codd’s original paper [3], but we use more modern notation [5] to benefit from years of

refinement.

The Cartesian product, defined in Definition 1, is our first operation. This opera-

tion joins all possible pairs of tuples between two relations. The degree (number of

elements in a tuple) of the resultant relation is different from that of strict set the-

ory, as the next example shows. For relations R(A,B,C) and S(A,E, F) we have

R × S = T (R.A,B,C, S.A,E, F). Note we used two identically named attributes in

our parent relations and these were denoted with Parent.Name in the new relation.

Sometimes this is considered part of a separate operation done before the Cartesian

product called rename. Rename is necessary for many operations in databases, but we

will use it only implicitly throughout this paper.

Set union (∪), intersection (∩), and difference (−) all behave in the usual set theoretic

manner with the qualification that participating relations have identical schemas.

Definition 2. Selection: Given R(i1, i2, . . . , in), we write a selection as

σikθv(R)

where ik is an attribute name, v is a value constant, and θ is a binary operation in the

set {<,≤,=,≥, >}. The result is a relation, whose elements are a subset of R, satisfying

the predicate formed by ikθv. We may extend this to any number of predicates simply

listed as σa1θv1,a2θv2,...,alθvl.

We may think of selection as a nice way to pick and choose specific tuples from

any relation, whether this be a single tuple or several. Relation 2 shows the result of a

selection performed on Figure 1.

Definition 3. Projection: Given a relation R(i1, i2 . . . , in) and a set {j1, j2, . . . , jm},
where each jk corresponds to an attribute il in the relation and m ≤ n, we write the

projection as

Πj1,j2,...,jm(R) = S(ji, j2, . . . , jm)

S is a new relation containing all tuples of R restricted to the attributes j1, j2, . . . , jm.

kwenholz 5

Name DateOfBirth HiveAddress

Joe 10/20/1901 222 Smokey Street
Sally 3/4/2001 321 Pooh Circle
Frank 10/20/1901 321 Pooh Circle

Relation 1=A

Name DateOfBirth HiveAddress

Sally 3/4/2001 321 Pooh Circle
Frank 10/20/1901 321 Pooh Circle

Relation 2: σHiveAddress=′321PoohCircle′(A).

It is easiest to think of a projection as simply column selection in the relation. In

fact, this really is an equivalent definition, albeit less rigorous. Look to Relation 3 for

the result of a projection.

Name DateOfBirth HiveAddress

Joe 10/20/1901 222 Smokey Street
Sally 3/4/2001 321 Pooh Circle
Frank 10/20/1901 321 Pooh Circle

Relation 1: A

Name DateOfBirth

Joe 10/20/1901
Sally 3/4/2001
Frank 10/20/1901

Relation 3: ΠName,DateOfBirth(A).

We might now wonder how to combine these operations. The answer is quite straight-

forward: operations in the relational algebra are composed just like functions (even with

the binary operators union, intersection, and difference). For example, we might take

σDateOfBirth=10/20/1901(ΠName,DateOfBirth(Relation1))

This is equivalent to asking for the name and date of birth of any bee born on 10/20/1901.

See Relation 4 for the result. These and even more complicated questions are now askable

and answerable through the relational algebra.

Name DateOfBirth

Joe 10/20/1901
Frank 10/20/1901

Relation 4: : An example of σDateOfBirth=10/20/1901(ΠName,DateOfBirth(Relation1)).

kwenholz 6

2.3 Derived Operations

Now that we have a grasp on the fundamental operations and elements of relational

algebra, let us examine more powerful questions. The goal of organizing data as we have

done so far is to create an easy and understandable means for answering questions about

this data. We call these questions queries. The following are several common types of

queries which are sometimes treated as their own operations, but they are all derived

from the basic operations stated earlier.

2.3.1 Join

Suppose we are given the relation Bee(Name,DateOfBirth). How might we go about

determining which bees were born on the same day? Assume we created a copy of our

table as Bee2. Our query might look like

σBee.DateOfBirth=Bee2.DateOfBirth,Bee.Name6=Bee2.Name(Bee×Bee2)

Our resulting relation would contain pairs of bees born on the same day, with their

names and each one’s date of birth. We could, of course, remove the date of birth with a

projection, but this is enough for now. We have just made a join of two tables (denoted

R on S for relations R and S). A join is an operation in which we take the cross product

of two tables and then select an attribute on which to “match” tuples. This is a very

natural and common operation. It is so common that at least four other variants of join

have been defined and are commonly used [5].

2.3.2 Division

Some queries may involve statements like the phrase “for all”. Suppose our bees from

earlier have many hives and we wish to know the bees registered with every residence

(i.e. hive). This sort of operation is normally referred to as division [5].

Definition 4. Division:let r and s be two schemas such that s ⊂ r. Let R(r) and S(s)

be two relations, R with schema r and and S with s. The relation R ÷ S is a relation

with schema r− s (all attributes of R not in S). A tuple t is in R÷S if and only if both

of two conditions hold:

1. t ∈ Πr−s(R)

2. For every tuple tS ∈ S, there is a tuple tR ∈ R satisfying both of the following:

kwenholz 7

(a) tR[s] = tS [s] (“matching” attributes of tR and tS hold equivalent values)

(b) tR[r−s] = t (the attributes r−s of tR are equal to an element t of the division)

Figure 2 provides an example of our previous question involving bees and their places

of residence.

Name DateOfBirth HiveAddress

Joe 10/20/1901 222 Smokey Street
Sally 3/4/2001 321 Pooh Circle
Frank 10/20/1901 321 Pooh Circle
Frank 10/20/1901 222 Smokey Street

A relation R.

Name

Frank

Figure 2: : ΠName,HiveAddress(R)÷ΠHiveAddress(R).

It might not be obvious how we could write division with our basic operations, but

Codd had a colleague point this out to him back when division was originally proposed

as a basic operation [3]:

R÷ S = Πr−s(r)−Πr−s((Πr−s(R)× S)−Πr−s,s(R))

To understand how this expression is true, observe that Πr−s(R) gives us all tuples

satisfying the first condition of Definition 4. The expression

(Πr−s(R))× S)−Πr−s,s(R))

removes all tuples not satisfying the second condition. Πr−s(R) × S is a relation on

schema r and pairs every tuple of Πr−s(R) with every tuple in S. Πr−s,s(R) simply

reorders the attributes of R. The difference of these two parts is the pairs of tuples from

Πr−s(R) and S not in R. Then subtracting (Πr−s(R) × S) − Πr−s,s(R)) from Πr−s(R)

gives us the tuples in R÷ S.

2.3.3 Extending Relational Algebra

From the operations we have just defined, there are many ways to extend the algebra with

new operations. We mentioned new join operations as one way. Others include aggregate

operations for sums over attributes, arithmetic operations as part of the projection, and

some notational schemes for assigning relations to variables.

kwenholz 8

3 Query Optimization

Now we turn our attention to the benefits of having a relational algebra. First and

foremost is simply having a means for expressing queries without a reliance on hardware

or other implementation details. Of primary importance to computer scientists, however,

is the use of relational algebra for query optimization and query language categorization.

We will not go into the details of the latter, but it is much like Turing completeness.

Query languages are simply programming languages meant to behave like relational

algebra. Due to constraints within the machine, however, these languages are not always

perfect implementations of the pure math we have worked with so far. We will consider

the language SQL (pronounced “sequel”) and how queries from this language may be

optimized. A query is executed optimally if it uses the fewest resources and takes the

least amount of time compared to all other execution strategies. Throughout this section

we will work with the list of relations given in Figure 3. This is the canonical example of

a company database. The domain of each attribute is not necessary to know, but most

should be self-evident.

Ioannidis [4] provides the best discussion of optimizing query languages using rela-

tional algebra. All diagrams following are redrawn from that paper. A brief discussion

is also found in Silberschatz et al. [5].

emp(name,age,sal,dno)
dept(dno,dname, oor,budget,mgr,ano)
acnt(ano,type,balance,bno)
bank(bno,bname,address)

Figure 3: : The relations we work with in Section 3

A basic SQL query has three components:

select <attribute names>

from <relations>

where <predicate statements>

The select clause is a list of attribute names we want in the result query (much like

a projection); from is a Cartesian product of the relations involved in this query; and

where is a list of predicates to select with, applied to the cross product of from (just

like selection). The “list” in the where clause is a series joined by any combination

of {and, or, not}, where these are equivalent to the eponymous boolean operations. An

example query can be found in Figure 4.

kwenholz 9

select name, floor
from emp, dept
where emp.dno=dept.dno and sal>100K

Figure 4: : Note in this example how we use relation.attribute for like named attributes
and keywords like and replace some boolean operators.

Figure 5: : These trees correspond to the SQL query in Figure 4. Select and project sym-
bols are removed for brevity, but understand boolean statements to be select statements
and attribute listings to be projections. Note join (on) uses leaves as inputs.

Any SQL statement may be broken down into a select-project-join query in relational

algebra. Furthermore, this query may be represented in a query tree whose leaves are

database relations and non-leaf nodes are algebraic operators select, project, or join.

Any non-leaf node represents the relation created by applying the given operation on its

children. Examples of query trees for Figure 4 are in Figure 5

We can see the number of possible trees for complicated queries may be immense,

and in order to truly optimize, we must consider the execution costs of every tree. We

can not store this many trees in memory and we certainly do not wish to consider all of

them. Thus, database management systems (DBMSs) usually form several restrictions

on the space of all trees considered.

kwenholz 10

3.0.4 Restriction 1

The first restriction is for selections and projections to be processed on the fly. That is,

we never consider them to generate intermediate relations. This restriction is somewhat

implementation specific, but in Figure 5 we would consider the leaves generated by select

and project statements to be part of join operations above them and never creating

“temporary variables”. For queries with no joins, this restriction is not applicable.

This restriction eliminates only sub-optimal query trees. Separate processing of selec-

tions and projections would only incur additional costs. Hence only different formations

of joins are considered for alternative query trees, rather than including variations on

the projections and selections.

3.0.5 Restriction 2

Note that joins are both commutative

R1 on R2 = R2 on R1

and associative

(R1 on R2) on R3 = R1 on (R2 on R3)

From this fact we could produce all alternative join trees. The number of these is huge,

on the order of Ω(N !) for N relations. So to further restrict the number of trees we must

examine, the second restriction helps deal with some of these joins.

The second restriction states that cross products are never formed unless the query

itself asks for them. Relations are always combined through a join. Consider Figure 6

with a query and its trees. Because emp and acnt are not joined in the query (note no

comparison in the where clause), they may be joined as shown in Figure 6 or combined

via cross product to answer the query. Restriction 2 would remove tree T3 in the

example.

Because Cartesian products are expensive computationally (multiple loops), this re-

striction nearly always eliminates sub-optimal queries. That this is false in certain fringe

cases is an acceptable cost for nearly all general purpose systems.

3.0.6 Restriction 3

This last restriction is made by a select few DBMSs, mostly because it is of a more

heuristic nature than our previous two. The restriction requires at least one operand of

kwenholz 11

select name, floor, balance
from emp, dept, acnt
where emp.dno=dept.dno and dept.ano=acnt.ano

Figure 6: : Examples of join trees for the query; T3 has a cross product.

any join operation to be a database relation and never an intermediate result. For the

query in Figure 7 we provide a tree satisfying this restriction.

select name, floor, balance, address
from emp, dept, acnt, bank
where emp.dno=dept.dno and

dept.ano=acnt.ano

Figure 7: : A query and its corresponding left-deep tree, satisfying Restriction 3.

We call the tree in Figure 7 a left-deep tree. Right-deep trees will similarly fulfill

restriction three. The advantage of these structures lies in the ability to reuse preexisting

indices and exploit implementation details regarding nested joins. The details of these

advantages are beyond the scope of this paper, but rest assured they are significant.

The third restriction will sometimes remove optimal trees, but it is genuinely agreed

these cases are few and the optimal left-deep tree is barely less optimal than the true

optimal tree.

kwenholz 12

3.0.7 Combining the Restrictions

The purpose of all the restrictions was to reduce the number of trees needing to be

examined. Ioannidis claims the number of trees to be explored can be reduced to O(2N)

for many queries with N relations. This is a massive improvement from where we started

with at least N ! trees. Further enhancements may be made if we continue exploiting

properties of the relational algebra with low-level implementation details in mind [4].

4 Conclusion

Throughout this paper we attempted to provide an introduction to relational algebra

and an example of the benefits we reap from a rigorous mathematical approach to data.

In Section 2 we examined the basic operations and several more interesting derived

operations from E.F. Codd’s relational algebra. This provided us with a hardware in-

dependent and mathematical structure for answering questions about data. Section 3

explored the use of relational algebra for structuring a database query and optimizing

that structure. Gains in speed and efficiency are essential for some industries. The use

of an algebra to describe something as ambiguous as data is invaluable in general.

kwenholz 13

References

[1] David L. Childs, Description of a set-theoretic data structure, Proceedings of the

December 9-11, 1968, fall joint computer conference, part I (New York, NY, USA),

AFIPS ’68 (Fall, part I), ACM, 1968, pp. 557–564.

[2] E. F. Codd, A relational model of data for large shared data banks, Commun. ACM

13 (1970), no. 6, 377–387.

[3] E. F. Codd, Relational completeness of data base sublanguages, Database Systems,

Prentice-Hall, 1972, pp. 65–98.

[4] Yannis E. Ioannidis, Query optimization, 1996.

[5] A. Silberschatz, H.F. Korth, and S. Sudershan, Database System Concepts, 4th ed.,

McGraw-Hill, Inc. New York, NY, USA, 2002.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,

California, 94041, USA.

