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Inner Product

The inner product is an algebraic operation that takes two
vectors and computes a single number, a scalar.
Introduces a geometric intuition for length and angles of
vectors.
Generalization of Dot product
Euclidean space and Hilbert Space
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Inner Products

Definition Real Inner Product
Let V be a real vector space and a,b ∈ V . An inner
product on V is a function 〈, 〉 : V × V → R satisfying the
following conditions:

〈αa + α′b, c〉 = α〈a, c〉+ α′〈b, c〉
〈c, αa + α′b〉 = α〈c,a〉+ α′〈c,b〉
〈a,b〉 = 〈b,a〉
〈a,a〉 is a positive real number for any a 6= 0

Definition Complex Inner Product
Let V be a real vector space and a,b ∈ V . An inner
product on V is a function 〈, 〉 : V × V → C satisfying the
following conditions:

〈αa + α′b, c〉 = α〈a, c〉+ α′〈b, c〉
〈c, αa + α′b〉 = α∗〈c,a〉+ α′∗〈c,b〉
〈a,b〉 = 〈b,a〉
〈a,a〉 is a positive real number for any a 6= 0
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Inner Products

The complex inner product is referred to as sesquilinear or
hermitian because it is linear in one term (coordinate) and
antilinear or conjugate-linear or semilinear in the other
term.
Dot product is bilinear.
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Inner Products

Definition Orthogonal Vectors
If V is a vector space, a,b ∈ V and 〈a,b〉 = 0 then a and b
are orthogonal to eachother.
Cauchy-Shwarz-Bunyakovsky inequality
If V is a vector space and a,b ∈ V then,

|〈b, c〉| ≤ ||b|| · ||c||

where,
||b|| =

√
〈b,b〉

and ||b|| is the length of b.

Cameron Braithwaite General Inner Product and The Fourier Series



General Inner Product
Fourier Series

Inner Products

Definition Distance
Let V be a vector space. Then the distance between any
two vectors a,b ∈ V is defined by,

d(a,b) = ||a− b||

Theorem Distance Corollary
Let V be a vector space. Then the distance between any
two factors a,b ∈ V satisfies,

d(b, c) ≥ 0 for any two vectors unless b = c then d(b, c) = 0

d(b, c) = d(c,b) (symmetry)
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Inner Products

Bessel’s Inequality
Suppose V is a vector space and B = {u1, ...,un} is an
orthonormal basis for V . Then for any v ∈ V ,

||v ||2 ≥ |〈v ,u1〉|2 + ...+ |〈v ,un〉|2

Theorem Inner Product Equivalence
Suppose V is a vector space with orthonormal basis
B = {u1, ...,uk}. Then any vector v ∈ V has the following
equivalences,

v =
n∑

k=1

〈v ,uk 〉uk

||v ||2 =
n∑

k=1

|〈v ,uk 〉|2
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Inner Products

Definition Closed System
If V is a vector space and B = {u1, ...,uk} is an
orthonormal basis of V then {u1, ...,uk} is a closed system
if for every v ∈ V ,

v =
∞∑

k=1

〈v ,uk 〉uk

That is, if the sequence {vn} defined by,

vn =
n∑

k=1

〈v ,uk 〉uk

converges to v ,
||v − vn|| → 0

as,
n→∞
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Fourier Series

Expansion of periodic function
Infinite sines and cosines
Harmonic Analysis
Breaking up function into set of terms
Recombination of terms to offer solution or approximation
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Fourier Series

Theorem Fourier Expansion
Suppose V is a vector space and B = {u1, ...,un} is an
orthonormal basis for V . Then for any v ∈ V ,

v = 〈v ,u1〉u1 + ...+ 〈v ,un〉un

Where the 〈v ,ui〉 coordinates are the Fourier coefficients
of v with respect to B and 〈v ,u1〉u1 + ...+ 〈v ,un〉un is the
Fourier expansion of v with respect to B.
Theorem Inner Product of continuous functions over the
complex numbers

〈f ,g〉 =
∫ b

a
f (x)g(x)dx
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Fourier Series

Definition Real form of Fourier Series
Suppose we have a periodic function f (x) with a period of
2π , where k = 0,1, ... Then the series is defined as,

ao/2 +
∞∑

k=1

(ak cos kx + bk sin kx),

where the coefficients ak ,bk are defined as,

ak = 1/π
∫ π

−π
f (x) cos kxdx

bk = 1/π
∫ π

−π
f (x) sin kxdx
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Fourier Series

Definition Complex form of Fourier Series
Suppose we have a periodic function f (x) with a period of
2π, where k = 0,1, ... Then the series is defined as,

∞∑
−∞

ckeikx

where ck is defined as,

ck = 1/2π
∫ π

−π
f (x)e−ikxdx
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L2 Space

Consists of equivalence functions
Same L2 function if difference in sets of functions
measures to zero
([−π, π])
Natural space for periodic functions
Wave functions
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L2 Space

Definition L2 ([−π, π]) Space
L2 is the set of all complex-valued functions on [−π, π] that
satisfy, ∫ π

−π
|f (x)|2dx <∞

Where the inner product is,

〈f ,g〉 = 1/π
∫ π

−π
f (x)g(x)dx
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Fourier Series

Theorem Fourier Series of L2 ([−π, π])
If f ∈ L2 then its Fourier Series is,

ao/2 +
∞∑

k=1

(ak cos kx + bk sin kx)

where,
ak = 〈f , cos kt〉

bk = 〈f , sin kt〉
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Fourier Series

Definition Convergence
Suppose we have a sequence of vectors (vn) in an inner
product space. Then the set converges to v ∈ V if:

lim
n→∞

d(vn, v) = 0

or,
lim

n→∞
||vn − v || = 0
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Fourier Series

Theorem Convergence of Fourier Series
Let f ∈ L2 and set,

g(t) = ao/2 +
n∑

k=1

(ak cos kt + bk sin kt)

Then g(t) ∈ L2 and,

||g(t)− f ||2 = 1/π
∫ π

−π
|g(t)− f (t)|2dt → 0

as n→ 0

Cameron Braithwaite General Inner Product and The Fourier Series



General Inner Product
Fourier Series

Theorem Parseval’s
Let V be a vector space and B = {u1, ...,uk} be a closed
orthonormal basis in V . Then for any v ,w ∈ V ,

〈v ,w〉 =
∞∑

k=1

akbk

where,
ak = 〈v ,uk 〉,bk = 〈w ,uk 〉

and,

||v ||2 =
∞∑

k=1

|〈v ,uk 〉|2 =
∞∑

k=1

|ak |2
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Example

The input to an electrical circuit that switches between a high
and a low state with time period 2π can be represented by the
boxcar function,

f (x) = 1 when 0 ≤ x ≤ π

f (x) = −1 when − π ≤ x ≤ 0

The periodic expansion of this function is referred to as the
square wave function. Generally this is the input to an electrical
circuit that switches from a high to low state with time period T
which can be represented by the general square wave function
with the basic period,

f (x) = 1 when 0 ≤ x ≤ T/2

f (x) = −1 when − T/2 ≤ x ≤ 0
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bk = 1/π
∫ π

−π
f (x) sin kxdx

= 2/π
∫ π

0
f (x) sin kxdx

= −2/kπ cos kx |π0
= −2/kπ((−1)k − 1)

Notice that ((−1)k − 1) = 1− 1 = 0 if k is even (2k) but it is
= −2 if k is odd (2k + 1).
Thus,

b2k = 0 and b2k+1 = −2/kπ(−2) = 4/(2k + 1)π

and we get,
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f (x) = 4/π
∞∑

k=odd

(1/k) sin kx

= 4/π
∞∑

k=0

(sin(2k + 1)x)/2k + 1

= 4/π(sin x + sin 3x/3 + sin 5x/5 + ...)

For the representation of the general square wave we obtain
an = 0,b2k = 0 and thus,

b2k+1 = (4/(2k + 1)π) sin((2(2k + 1)πx)/T )

and we get the final representation,

f (x) = 4/π
∞∑

k=0

(1/2k + 1) sin((2(2k + 1)πx)/T )
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Summary

Inner Product Intuition
Orthogonality
Closure
Convergence and Equivalence
Distance and Difference

Fourier Series
Expansion
Orthogonality of sine and cosine
L2 space and Functions
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