General Inner Product and The Fourier Series

A Linear Algebra Approach

Cameron Braithwaite

Department of Mathematics
University of Puget Sound
4-20-14 / Spring Semester

Outline

(1) General Inner Product
(2) Fourier Series

Inner Product

- The inner product is an algebraic operation that takes two vectors and computes a single number, a scalar.
- Introduces a geometric intuition for length and angles of vectors.
- Generalization of Dot product
- Euclidean space and Hilbert Space

Inner Products

- Definition Real Inner Product

Let V be a real vector space and $a, b \in V$. An inner product on V is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ satisfying the following conditions:

- $\left\langle\alpha \boldsymbol{a}+\alpha^{\prime} \boldsymbol{b}, \boldsymbol{c}\right\rangle=\alpha\langle\boldsymbol{a}, \boldsymbol{c}\rangle+\alpha^{\prime}\langle\boldsymbol{b}, \boldsymbol{c}\rangle$
- $\left\langle\boldsymbol{c}, \alpha \mathbf{a}+\alpha^{\prime} \boldsymbol{b}\right\rangle=\alpha\langle\boldsymbol{c}, \boldsymbol{a}\rangle+\alpha^{\prime}\langle\boldsymbol{c}, \boldsymbol{b}\rangle$
- $\langle a, b\rangle=\langle b, a\rangle$
- $\langle a, a\rangle$ is a positive real number for any $a \neq 0$
- Definition Complex Inner Product Let V be a real vector space and $a, b \in V$. An inner product on V is a function $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ satisfying the following conditions:
- $\left\langle\alpha a+\alpha^{\prime} b, c\right\rangle=\alpha\langle a, c\rangle+\alpha^{\prime}\langle b, c\rangle$
- $\left\langle\boldsymbol{c}, \alpha \boldsymbol{a}+\alpha^{\prime} \boldsymbol{b}\right\rangle=\alpha^{*}\langle\boldsymbol{c}, \boldsymbol{a}\rangle+\alpha^{\prime *}\langle\boldsymbol{c}, \boldsymbol{b}\rangle$
- $\langle a, b\rangle=\overline{\langle b, a\rangle}$
- $\langle a, a\rangle$ is a positive real number for any $a \neq 0$

Inner Products

- The complex inner product is referred to as sesquilinear or hermitian because it is linear in one term (coordinate) and antilinear or conjugate-linear or semilinear in the other term.
- Dot product is bilinear.

Inner Products

- Definition Orthogonal Vectors If V is a vector space, $a, b \in V$ and $\langle a, b\rangle=0$ then a and b are orthogonal to eachother.
- Cauchy-Shwarz-Bunyakovsky inequality If V is a vector space and $a, b \in V$ then,

$$
|\langle b, c\rangle| \leq\|b\| \cdot\|c\|
$$

where,

$$
\|b\|=\sqrt{\langle b, b\rangle}
$$

and $\|b\|$ is the length of b.

Inner Products

- Definition Distance

Let V be a vector space. Then the distance between any two vectors $a, b \in V$ is defined by,

$$
d(a, b)=\|a-b\|
$$

- Theorem Distance Corollary

Let V be a vector space. Then the distance between any two factors $a, b \in V$ satisfies,
$d(b, c) \geq 0$ for any two vectors unless $b=c$ then $d(b, c)=0$

$$
d(b, c)=d(c, b) \text { (symmetry) }
$$

Inner Products

- Bessel's Inequality

Suppose V is a vector space and $B=\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis for V. Then for any $v \in V$,

$$
\|v\|^{2} \geq\left|\left\langle v, u_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, u_{n}\right\rangle\right|^{2}
$$

- Theorem Inner Product Equivalence Suppose V is a vector space with orthonormal basis $B=\left\{u_{1}, \ldots, u_{k}\right\}$. Then any vector $v \in V$ has the following equivalences,

$$
\begin{gathered}
v=\sum_{k=1}^{n}\left\langle v, u_{k}\right\rangle u_{k} \\
\|v\|^{2}=\sum_{k=1}^{n}\left|\left\langle v, u_{k}\right\rangle\right|^{2}
\end{gathered}
$$

Inner Products

- Definition Closed System

If V is a vector space and $B=\left\{u_{1}, \ldots, u_{k}\right\}$ is an orthonormal basis of V then $\left\{u_{1}, \ldots, u_{k}\right\}$ is a closed system if for every $v \in V$,

$$
v=\sum_{k=1}^{\infty}\left\langle v, u_{k}\right\rangle u_{k}
$$

That is, if the sequence $\left\{v_{n}\right\}$ defined by,

$$
v_{n}=\sum_{k=1}^{n}\left\langle v, u_{k}\right\rangle u_{k}
$$

converges to v,

$$
\left\|v-v_{n}\right\| \rightarrow 0
$$

as,

$$
n \rightarrow \infty
$$

Fourier Series

- Expansion of periodic function
- Infinite sines and cosines
- Harmonic Analysis
- Breaking up function into set of terms
- Recombination of terms to offer solution or approximation

Fourier Series

- Theorem Fourier Expansion

Suppose V is a vector space and $B=\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis for V. Then for any $v \in V$,

$$
v=\left\langle v, u_{1}\right\rangle u_{1}+\ldots+\left\langle v, u_{n}\right\rangle u_{n}
$$

Where the $\left\langle v, u_{i}\right\rangle$ coordinates are the Fourier coefficients of v with respect to B and $\left\langle v, u_{1}\right\rangle u_{1}+\ldots+\left\langle v, u_{n}\right\rangle u_{n}$ is the Fourier expansion of v with respect to B.

- Theorem Inner Product of continuous functions over the complex numbers

$$
\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x
$$

Fourier Series

- Definition Real form of Fourier Series

Suppose we have a periodic function $f(x)$ with a period of 2π, where $k=0,1, \ldots$ Then the series is defined as,

$$
a_{o} / 2+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

where the coefficients a_{k}, b_{k} are defined as,

$$
\begin{aligned}
& a_{k}=1 / \pi \int_{-\pi}^{\pi} f(x) \cos k x d x \\
& b_{k}=1 / \pi \int_{-\pi}^{\pi} f(x) \sin k x d x
\end{aligned}
$$

Fourier Series

- Definition Complex form of Fourier Series

Suppose we have a periodic function $f(x)$ with a period of 2π, where $k=0,1, \ldots$ Then the series is defined as,

$$
\sum_{-\infty}^{\infty} c_{k} e^{i k x}
$$

where c_{k} is defined as,

$$
c_{k}=1 / 2 \pi \int_{-\pi}^{\pi} f(x) e^{-i k x} d x
$$

L^{2} Space

- Consists of equivalence functions
- Same L^{2} function if difference in sets of functions measures to zero
- ($[-\pi, \pi])$
- Natural space for periodic functions
- Wave functions

L^{2} Space

- Definition $L^{2}([-\pi, \pi])$ Space
L^{2} is the set of all complex-valued functions on $[-\pi, \pi]$ that satisfy,

$$
\int_{-\pi}^{\pi}|f(x)|^{2} d x<\infty
$$

Where the inner product is,

$$
\langle f, g\rangle=1 / \pi \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

Fourier Series

- Theorem Fourier Series of $L^{2}([-\pi, \pi])$ If $f \in L^{2}$ then its Fourier Series is,

$$
a_{o} / 2+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

where,

$$
\begin{aligned}
a_{k} & =\langle f, \cos k t\rangle \\
b_{k} & =\langle f, \sin k t\rangle
\end{aligned}
$$

Fourier Series

- Definition Convergence

Suppose we have a sequence of vectors $\left(v_{n}\right)$ in an inner product space. Then the set converges to $v \in V$ if:

$$
\lim _{n \rightarrow \infty} \mathrm{~d}\left(v_{n}, v\right)=0
$$

or,

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|=0
$$

Fourier Series

- Theorem Convergence of Fourier Series

Let $f \in L^{2}$ and set,

$$
g(t)=a_{0} / 2+\sum_{k=1}^{n}\left(a_{k} \cos k t+b_{k} \sin k t\right)
$$

Then $g(t) \in L^{2}$ and,

$$
\|g(t)-f\|^{2}=1 / \pi \int_{-\pi}^{\pi}|g(t)-f(t)|^{2} d t \rightarrow 0
$$

as $n \rightarrow 0$

- Theorem Parseval's

Let V be a vector space and $B=\left\{u_{1}, \ldots, u_{k}\right\}$ be a closed orthonormal basis in V. Then for any $v, w \in V$,

$$
\langle v, w\rangle=\sum_{k=1}^{\infty} a_{k} \overline{b_{k}}
$$

where,

$$
a_{k}=\left\langle v, u_{k}\right\rangle, b_{k}=\left\langle w, u_{k}\right\rangle
$$

and,

$$
\|v\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle v, u_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}
$$

Example

The input to an electrical circuit that switches between a high and a low state with time period 2π can be represented by the boxcar function,

$$
\begin{gathered}
f(x)=1 \text { when } 0 \leq x \leq \pi \\
f(x)=-1 \text { when }-\pi \leq x \leq 0
\end{gathered}
$$

The periodic expansion of this function is referred to as the square wave function. Generally this is the input to an electrical circuit that switches from a high to low state with time period T which can be represented by the general square wave function with the basic period,

$$
\begin{gathered}
f(x)=1 \text { when } 0 \leq x \leq T / 2 \\
f(x)=-1 \text { when }-T / 2 \leq x \leq 0
\end{gathered}
$$

Example

$$
\begin{aligned}
b_{k} & =1 / \pi \int_{-\pi}^{\pi} f(x) \sin k x d x \\
= & 2 / \pi \int_{0}^{\pi} f(x) \sin k x d x \\
& =-2 /\left.k \pi \cos k x\right|_{0} ^{\pi} \\
& =-2 / k \pi\left((-1)^{k}-1\right)
\end{aligned}
$$

Notice that $\left((-1)^{k}-1\right)=1-1=0$ if k is even $(2 k)$ but it is $=-2$ if k is odd $(2 k+1)$.
Thus,

$$
b_{2 k}=0 \text { and } b_{2 k+1}=-2 / k \pi(-2)=4 /(2 k+1) \pi
$$

and we get,

Example

$$
\begin{gathered}
f(x)=4 / \pi \sum_{k=o d d}^{\infty}(1 / k) \sin k x \\
=4 / \pi \sum_{k=0}^{\infty}(\sin (2 k+1) x) / 2 k+1 \\
=4 / \pi(\sin x+\sin 3 x / 3+\sin 5 x / 5+\ldots)
\end{gathered}
$$

For the representation of the general square wave we obtain $a_{n}=0, b_{2 k}=0$ and thus,

$$
b_{2 k+1}=(4 /(2 k+1) \pi) \sin ((2(2 k+1) \pi x) / T)
$$

and we get the final representation,

$$
f(x)=4 / \pi \sum_{k=0}^{\infty}(1 / 2 k+1) \sin ((2(2 k+1) \pi x) / T)
$$

Summary

- Inner Product Intuition
- Orthogonality
- Closure
- Convergence and Equivalence
- Distance and Difference
- Fourier Series
- Expansion
- Orthogonality of sine and cosine
- L^{2} space and Functions

