Polar Decomposition of a Matrix

Garrett Buffington

May 4, 2014

Table of Contents

(1) The Polar Decomposition

- What is it?
- Square Root Matrix
- The Theorem

Table of Contents

(1) The Polar Decomposition

- What is it?
- Square Root Matrix
- The Theorem
(2) SVD and Polar Decomposition
- Polar Decomposition from SVD
- Example Using SVD

Table of Contents

(1) The Polar Decomposition

- What is it?
- Square Root Matrix
- The Theorem
(2) SVD and Polar Decomposition
- Polar Decomposition from SVD
- Example Using SVD
(3) Geometric Concepts
- Motivating Example
- Rotation Matrices
- P and r

Table of Contents

(1) The Polar Decomposition

- What is it?
- Square Root Matrix
- The Theorem
(2) SVD and Polar Decomposition
- Polar Decomposition from SVD
- Example Using SVD
(3) Geometric Concepts
- Motivating Example
- Rotation Matrices
- P and r

4 Applications

- Iterative methods for U

Table of Contents

(1) The Polar Decomposition

- What is it?
- Square Root Matrix
- The Theorem
(2) SVD and Polar Decomposition
- Polar Decomposition from SVD
- Example Using SVD
(3) Geometric Concepts
- Motivating Example
- Rotation Matrices
- P and r

4 Applications

- Iterative methods for U
(5) Conclusion

What is it?

Definition (Right Polar Decomposition)

The right polar decomposition of a matrix $A \in \mathbb{C}^{m \times n} m \geq n$ has the form $A=U P$ where $U \in \mathbb{C}^{m \times n}$ is a matrix with orthonormal columns and $P \in \mathbb{C}^{n \times n}$ is positive semi-definite.

What is it?

Definition (Right Polar Decomposition)

The right polar decomposition of a matrix $A \in \mathbb{C}^{m \times n} m \geq n$ has the form $A=U P$ where $U \in \mathbb{C}^{m \times n}$ is a matrix with orthonormal columns and $P \in \mathbb{C}^{n \times n}$ is positive semi-definite.

Definition (Left Polar Decomposition)

The left polar decomposition of a matrix $A \in \mathbb{C}^{n \times m} m \geq n$ has the form $A=H U$ where $H \in \mathbb{C}^{n \times n}$ is positive semi-definite and $U \in \mathbb{C}^{n \times m}$ has orthonormal columns.

Square Root of a Matrix

Theorem (The Square Root of a Matrix)
 If A is a normal matrix then there exists a positive semi-definite matrix P such that $A=P^{2}$.

Square Root of a Matrix

Theorem (The Square Root of a Matrix)

If A is a normal matrix then there exists a positive semi-definite matrix P such that $A=P^{2}$.

Proof.

Suppose you have a normal matrix A of size n. Then A is orthonormally diagonalizable. This means that there is a unitary matrix S and a diagonal matrix B whose diagonal entries are the eigenvalues of A so that $A=S B S^{*}$ where $S^{*} S=I_{n}$. Since A is normal the diagonal entries of B are all positive, making B positive semi-definite as well. Because B is diagonal with real, non-negative entries we can easily define a matrix C so that the diagonal entries of C are the square roots of the eigenvalues of A. This gives us the matrix equality $C^{2}=B$. Define P with the equality $P=S C S^{*}$.

The Theorem

Definition (P)

The matrix P is defined as $\sqrt{A^{*} A}$ where $A \in \mathbb{C}^{m \times n}$.

The Theorem

Definition (P)

The matrix P is defined as $\sqrt{A^{*} A}$ where $A \in \mathbb{C}^{m \times n}$.

Theorem (Right Polar Decomposition)

For any matrix $A \in \mathbb{C}^{m \times n}$, where $m \geq n$, there is a matrix $U \in \mathbb{C}^{m \times n}$ with orthonormal columns and a positive semi-definite matrix $P \in \mathbb{C}^{n \times n}$ so that $A=U P$.

Example

A

$A=\left[\begin{array}{lll}3 & 8 & 2 \\ 2 & 5 & 7 \\ 1 & 4 & 6\end{array}\right] \quad A^{*} A=\left[\begin{array}{ccc}14 & 38 & 26 \\ 38 & 105 & 75 \\ 25 & 76 & 89\end{array}\right]$

Example

A

$$
A=\left[\begin{array}{lll}
3 & 8 & 2 \\
2 & 5 & 7 \\
1 & 4 & 6
\end{array}\right] \quad A^{*} A=\left[\begin{array}{ccc}
14 & 38 & 26 \\
38 & 105 & 75 \\
25 & 76 & 89
\end{array}\right]
$$

S, S^{-1}, and C

$$
\begin{aligned}
& S=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-0.3868 & 2.3196 & 2.8017 \\
0.0339 & -3.0376 & 2.4687
\end{array}\right] \\
& S^{-1}=\left[\begin{array}{ccc}
0.8690 & -0.3361 & 0.0294 \\
0.0641 & 0.1486 & -0.1946 \\
0.0669 & 0.1875 & 0.1652
\end{array}\right] \\
& C=\left[\begin{array}{ccc}
0.4281 & 0 & 0 \\
0 & 4.8132 & 0 \\
0 & 0 & 13.5886
\end{array}\right]
\end{aligned}
$$

Example

$$
P=\sqrt{A^{*} A}=S^{*} C S^{-1}=\left[\begin{array}{lll}
1.5897 & 3.1191 & 1.3206 \\
3.1191 & 8.8526 & 4.1114 \\
1.3206 & 4.1114 & 8.3876
\end{array}\right]
$$

Example

P
$P=\sqrt{A^{*} A}=S^{*} C S^{-1}=\left[\begin{array}{lll}1.5897 & 3.1191 & 1.3206 \\ 3.1191 & 8.8526 & 4.1114 \\ 1.3206 & 4.1114 & 8.3876\end{array}\right]$
U
$U=\left[\begin{array}{ccc}0.3019 & 0.9175 & -0.2588 \\ 0.6774 & -0.0154 & 0.7355 \\ -0.6708 & 0.3974 & 0.6262\end{array}\right]$

Example

P

$$
P=\sqrt{A^{*} A}=S^{*} C S^{-1}=\left[\begin{array}{lll}
1.5897 & 3.1191 & 1.3206 \\
3.1191 & 8.8526 & 4.1114 \\
1.3206 & 4.1114 & 8.3876
\end{array}\right]
$$

U

$$
U=\left[\begin{array}{ccc}
0.3019 & 0.9175 & -0.2588 \\
0.6774 & -0.0154 & 0.7355 \\
-0.6708 & 0.3974 & 0.6262
\end{array}\right]
$$

$$
U P=\left[\begin{array}{lll}
1.5897 & 3.1191 & 1.3206 \\
3.1191 & 8.8526 & 4.1114 \\
1.3206 & 4.1114 & 8.3876
\end{array}\right]\left[\begin{array}{ccc}
0.3019 & 0.9175 & -0.2588 \\
0.6774 & -0.0154 & 0.7355 \\
-0.6708 & 0.3974 & 0.6262
\end{array}\right]
$$

Polar Decomposition from SVD

Theorem (SVD to Polar Decomposition)

For any matrix $A \in \mathbb{C}^{m \times n}$, where $m \geq n$, there is a matrix $U \in \mathbb{C}^{m \times n}$ with orthonormal columns and a positive semi-definite matrix $P \in \mathbb{C}^{n \times n}$ so that $A=U P$.

Polar Decomposition from SVD

Theorem (SVD to Polar Decomposition)

For any matrix $A \in \mathbb{C}^{m \times n}$, where $m \geq n$, there is a matrix $U \in \mathbb{C}^{m \times n}$ with orthonormal columns and a positive semi-definite matrix $P \in \mathbb{C}^{n \times n}$ so that $A=U P$.

Proof.

$$
\begin{aligned}
A & =U_{S} S V^{*} \\
& =U_{S} I_{n} S V^{*} \\
& =U_{S} V^{*} V S V^{*} \\
& =U P
\end{aligned}
$$

Example Using SVD

Give Sage our A and ask to find the SVD
SVD
$A=\left[\begin{array}{lll}3 & 8 & 2 \\ 2 & 5 & 7 \\ 1 & 4 & 6\end{array}\right]$

Example Using SVD

Give Sage our A and ask to find the SVD
SVD

$$
A=\left[\begin{array}{lll}
3 & 8 & 2 \\
2 & 5 & 7 \\
1 & 4 & 6
\end{array}\right]
$$

Components

$U_{S}=\left[\begin{array}{lll}0.5778 & 0.8142 & 0.0575 \\ 0.6337 & 0.4031 & 0.6602 \\ 0.5144 & 0.4179 & 0.7489\end{array}\right]$
$S=\left[\begin{array}{ccc}13.5886 & 0 & 0 \\ 0 & 4.8132 & 0 \\ 0 & 0 & 0.4281\end{array}\right]$
$V=\left[\begin{array}{ccc}0.2587 & 0.2531 & 0.9322 \\ 0.7248 & 0.5871 & 0.3605 \\ 0.6386 & 0.7689 & 0.0316\end{array}\right]$

Example Using SVD

U

$U=U_{S} v^{*}$
$=\left[\begin{array}{lll}0.5778 & 0.8142 & 0.0575 \\ 0.6337 & 0.4031 & 0.6602 \\ 0.5144 & 0.4179 & 0.7489\end{array}\right]\left[\begin{array}{ccc}-0.2587 & -0.7248 & -0.6386 \\ 0.2531 & 0.5871 & -0.7689 \\ -0.9322 & 0.3605 & -0.0316\end{array}\right]$
$=\left[\begin{array}{c}0.3019 \\ 0.6774 \\ -0.6708\end{array}\right.$
$0.9175-0.2588$
$-0.0154 \quad 0.7355$
$0.3974 \quad 0.6262$]

Example Using SVD

U

$$
\begin{aligned}
& U=U_{S} V^{*} \\
& =\left[\begin{array}{ccc}
0.5778 & 0.8142 & 0.0575 \\
0.6337 & 0.4031 & 0.6602 \\
0.5144 & 0.4179 & 0.7489
\end{array}\right]\left[\begin{array}{ccc}
-0.2587 & -0.7248 & -0.6386 \\
0.2531 & 0.5871 & -0.7689 \\
-0.9322 & 0.3605 & -0.0316
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.3019 & 0.9175 & -0.2588 \\
0.6774 & -0.0154 & 0.7355 \\
-0.6708 & 0.3974 & 0.6262
\end{array}\right]
\end{aligned}
$$

P

$P=V S V^{*}$
$=\left[\begin{array}{lll}0.2587 & 0.2531 & 0.9322 \\ 0.7248 & 0.5871 & 0.3605 \\ 0.6386 & 0.7689 & 0.0316\end{array}\right]$
$=\left[\begin{array}{lll}1.5897 & 3.1191 & 1.3206 \\ 3.1191 & 8.8526 & 4.1114 \\ 1.3206 & 4.1114 & 8.3876\end{array}\right]$
$\left[\begin{array}{ccc}13.5886 & 0 & 0 \\ 0 & 4.8132 & 0 \\ 0 & 0 & 0.4281\end{array}\right]$

$$
\left[\begin{array}{ccc}
-0.2587 & -0.7248 & -0.6386 \\
0.2531 & 0.5871 & -0.7689 \\
-0.9322 & 0.3605 & -0.0316
\end{array}\right]
$$

Geometry Concepts

Matrices
 $A=U P$

Geometry Concepts

Matrices
 $A=U P$

Complex Numbers
$z=r e^{i \theta}$

Motivating Example

2×2

$$
A=\left[\begin{array}{cc}
1.300 & -.375 \\
.750 & .650
\end{array}\right]
$$

Motivating Example

2×2

$$
A=\left[\begin{array}{cc}
1.300 & -.375 \\
.750 & .650
\end{array}\right]
$$

Polar Decomposition

$$
\begin{aligned}
& U=\left[\begin{array}{cc}
0.866 & -0.500 \\
0.500 & 0.866
\end{array}\right]=\left[\begin{array}{cc}
\cos 30 & -\sin 30 \\
\sin 30 & \cos 30
\end{array}\right] \\
& P=\left[\begin{array}{cc}
1.50 & 0.0 \\
0.0 & 0.75
\end{array}\right]=\sqrt{A^{*} A}
\end{aligned}
$$

P and r

2×2

$R=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$

r
 $r=\sqrt{x^{2}+y^{2}}$

2×2

$R=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
r
$r=\sqrt{x^{2}+y^{2}}$
r Vector
$\|\mathbf{r}\|=\sqrt{\mathbf{r}^{*} \mathbf{r}}$

P and r

2×2

$R=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
r

$$
r=\sqrt{x^{2}+y^{2}}
$$

r Vector

$$
\|\mathbf{r}\|=\sqrt{\mathbf{r}^{*} \mathbf{r}}
$$

P

$P=\sqrt{A^{*} A}$

iitit

Continuum Mechanics

iitit
 Continuum Mechanics

ititit

Computer Graphics

Iterative Methods for U

Newton Iteration
$U_{k+1}=\frac{1}{2}\left(U_{k}+U_{k}^{-t}\right), \quad U_{0}=A$

Iterative Methods for U

Newton Iteration

$$
U_{k+1}=\frac{1}{2}\left(U_{k}+U_{k}^{-t}\right), \quad U_{0}=A
$$

Frobenius Norm Accelerator
$\gamma_{F_{k}}=\frac{\left\|U_{k}^{-1}\right\|_{F}^{\frac{1}{2}}}{\left\|U_{k}\right\|_{F}^{\frac{1}{2}}}$

Iterative Methods for U

Newton Iteration

$$
U_{k+1}=\frac{1}{2}\left(U_{k}+U_{k}^{-t}\right), \quad U_{0}=A
$$

Frobenius Norm Accelerator
$\gamma_{F_{k}}=\frac{\left\|U_{k}^{-1}\right\|_{F}^{\frac{1}{2}}}{\left\|U_{k}\right\|_{F}^{\frac{1}{2}}}$

Spectral Norm Accelerator
$\gamma_{S_{k}}=\frac{\left\|U_{k}^{-1}\right\|_{S}^{\frac{1}{2}}}{\left\|U_{k}\right\|_{S}^{\frac{1}{2}}}$

Rotation Matrices

> What's Up with U?
> U $=\mathrm{R}_{\theta} R_{\psi} R_{\kappa} V^{*}$
> $=\left[\begin{array}{ccc}\cos \psi \cos \kappa & \cos \psi \sin \kappa & -\sin \psi \\ \sin \theta \sin \psi \cos \kappa-\cos \theta \sin \kappa & \sin \theta \sin \psi \sin \kappa+\cos \theta \cos \kappa & \sin \theta \cos \psi \\ \cos \theta \sin \psi \cos \kappa+\sin \theta \sin \kappa & \cos \theta \sin \psi \sin \kappa-\sin \theta \cos \kappa & \cos \theta \cos \psi\end{array}\right] \mathrm{V}^{*}$

P and r

$$
r=\sqrt{x^{2}+y^{2}}
$$

r Vector
$\|\mathbf{r}\|=\sqrt{\mathbf{r}^{*} \mathbf{r}}$

$$
r=\sqrt{r} \begin{aligned}
& x^{2}+y^{2}
\end{aligned}
$$

r Vector

$$
\|\mathbf{r}\|=\sqrt{\mathbf{r}^{*} \mathbf{r}}
$$

$$
\begin{aligned}
& P \\
& P=\sqrt{A^{*} A}
\end{aligned}
$$

Ideal Example

Ideal Example

Ideal Example

$$
A=U P
$$

$\left[\begin{array}{ccc}.5 & .25 & -.2355 \\ -.1464 & .4268 & .1665 \\ .8536 & -.0884 & .1665\end{array}\right]$

Applications

Use
 Continuum Mechanics

Applications

Use

Continuum Mechanics

Another Use
 Computer Graphics

Iterative Methods for U

Newton Iteration
$U_{k+1}=\frac{1}{2}\left(U_{k}+U_{k}^{-t}\right), \quad U_{0}=A$

Iterative Methods for U

Newton Iteration

$$
U_{k+1}=\frac{1}{2}\left(U_{k}+U_{k}^{-t}\right), \quad U_{0}=A
$$

Frobenius Norm Accelerator

$$
\gamma_{F_{k}}=\frac{\left\|U_{k}^{-1}\right\|_{F}^{\frac{1}{2}}}{\left\|U_{k}\right\|_{F}^{\frac{1}{2}}}
$$

Iterative Methods for U

Newton Iteration

$$
U_{k+1}=\frac{1}{2}\left(U_{k}+U_{k}^{-t}\right), \quad U_{0}=A
$$

Frobenius Norm Accelerator

$$
\gamma_{F_{k}}=\frac{\left\|U_{k}^{-1}\right\|_{F}^{\frac{1}{2}}}{\left\|U_{k}\right\|_{F}^{\frac{1}{2}}}
$$

Spectral Norm Accelerator
$\gamma_{S_{k}}=\frac{\left\|U_{k}^{-1}\right\|_{S}^{\frac{1}{2}}}{\left\|U_{k}\right\|_{S}^{\frac{1}{2}}}$

Conclusion

Conclusion

References

1. Beezer, Robert A. A Second Course in Linear Algebra.Web.
2. Beezer, Robert A. A First Course in Linear Algebra.Web.
3. Byers, Ralph and Hongguo Xu.

A New Scaling For Newton's Iteration for the Polar Decomposition and Its Backward Stability.
http://www.math.ku.edu/~xu/arch/bx1-07R2.pdf.
4. Duff, Tom, Ken Shoemake. "Matrix animation and polar decomposition." In Proceedings of the conference on Graphics interface(1992): 258-264.http://research.cs.wisc.edu/graphics/
Courses/838-s2002/Papers/polar-decomp.pdf.
5. Gavish, Matan.

A Personal Interview with the Singular Value Decomposition.
http://www.stanford.edu/~gavish/documents/SVD_ans_you.pdf.
6. Gruber, Diana. "The Mathematics of the 3D Rotation Matrix."
http://www.fastgraph.com/makegames/3drotation/.
7. McGinty, Bob. http:
//www.continuummechanics.org/cm/polardecomposition.html.

