Tournament Matrices

Imanuel Chen

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Introduction		Ranking	Big Example
•••			
	0000		
Graph Theory			

 Digraph that represents the outcome of a round-robin tournament

- ∢ ≣ ▶

____ ▶

3) 3

Introduction		Ranking	Big Example
•••			
	0000		
Graph Theory			

- Digraph that represents the outcome of a round-robin tournament
- Vertices are teams
- Edges denotes the victor between two teams
- ► *K_n* with direction

Introduction	Types	Ranking	Big Example
00			
	0000		
Graph Theory			

Example

Introduction		Ranking	Big Example
00		00	
0000			
Matrix Form			

< □ > < 同 > < 回 >

Tournament Matrices

Adjacency matrix of a tournament

Introduction		Ranking	Big Example
00		00	
●000			
Matrix Form			

Tournament Matrices

- Adjacency matrix of a tournament
- ▶ 1's represent wins, 0's represent losses

Introduction	Types	Ranking	Big Example
00		00	
	õõoo	õ	
Matrix Form			

문 문 문

____ ▶

Properties

Let A be a tournament matrix of size $n \times n$

•
$$[A]_{ii} = 0 \text{ for } 1 \le i \le n$$

• $[A]_{ij} + [A]_{ji} = 1 \text{ for } 1 \le i < j \le n$
• $A + A^T = J_n - I_n$
• $\sum_{i=1}^n \sum_{j=1}^n [A]_{ij} = \binom{n}{2}$

Introduction		Ranking	Big Example
00		00	
0000			
Matrix Form			

Row and Column Sums

• Row sum vector
$$R = (r_1, r_2, ..., r_n)$$
 where $r_i = \sum_{j=1}^n [A]_{ij}$

э

- r_i represents the number of wins team i has
- Also known as the score vector

•
$$R = R(A) = Aj_n$$

Introduction		Ranking	Big Example
00		00	
0000			
Matrix Form			

Row and Column Sums

• Row sum vector
$$R = (r_1, r_2, ..., r_n)$$
 where $r_i = \sum_{j=1}^n [A]_{ij}$

- r_i represents the number of wins team i has
- Also known as the score vector

$$\blacktriangleright R = R(A) = Aj_n$$

• Column sum vector
$$S = (s_1, s_2, ..., s_n)$$
 where $s_i = \sum_{i=1}^n [A]_{ij}$

s_i represents the number of losses team i has

Introduction		Ranking	Big Example
00		00	
0000			
Matrix Form			

<ロト < 同ト < 三ト

⊸ ≣ ⊁

æ

	Types	Ranking	Big Example
00	•	00	
0000	00	00	

Generalized Tournament Matrices

Generalized Tournament Matrices

	Types	Ranking	Big Example
00		00	
0000	00	00	
Generalized Tournam	ent Matrices		

Generalized Tournament Matrices

- Tournament matrix where the values of the entries are 0 and 1 inclusive
- > Entries are the probabilities that one team will defeat another

	Types	Ranking	Big Example
00		00	
0000	•0	00	
Regular Tournament	Matrices		

Regular Tournament Matrices

A tournament matrix A of size n with score vector R is a regular tournament matrix if

- n is odd
- Every entry of R is (n-1)/2

Example:

 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

	Types	Ranking	Big Example
00		00	
	00		
Regular Tournament N	latrices		

- Nonsingular
- ► Irreducible (*PAP^T* ≠ block upper-triangular matrix)

	Types	Ranking	Big Example
00		00	
	00		
Regular Tournament	Matrices		

- Nonsingular
- ► Irreducible (PAP^T ≠ block upper-triangular matrix)
- Normal (AA* = A*A)
- Unitarily Diagonalizable (UAU* = diagonal matrix)

	Types	Ranking	Big Example
00		00	
	00		
Regular Tournament	Matrices		

Properties

- Nonsingular
- ► Irreducible (PAP^T ≠ block upper-triangular matrix)
- Normal (AA* = A*A)
- Unitarily Diagonalizable (UAU* = diagonal matrix)
- Spectral radius $\rho = \rho(A) = (n-1)/2$
- $Aj_n = \rho j_n$
- Tournament matrices of size n where n is odd with the largest spectral radius are regular

	Types	Ranking	Big Example
00		00	
0000	00	00	
	0000		
Near-Regular Tournar	nent Matrices		

Near-Regular Tournament Matrices

A tournament matrix A of size n with score vector R is a near-regular tournament matrix if

n is even

▶ Half the entries of R are (n-2)/2 and the other half are n/2

Example: $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

	Types	Ranking	Big Example
00		00	
	0000		
Near-Regular Tournar	nent Matrices		

Construction

	Types	Ranking	Big Example
00		00	
	0000		
Near-Regular Tournar	nent Matrices		

Construction

Theorem Let A be any $n \times n$ tournament matrix. Then,

$$M_{A} = \begin{bmatrix} A & A^{T} \\ A^{T} + I_{n} & A \end{bmatrix}$$

is a $2n \times 2n$ near-regular tournament matrix.

	Types	Ranking	Big Example
00		00	
	0000		
Near-Regular Tournar	nent Matrices		

Proof.

Since $A + A^T = J_n - I_n$, the first *n* rows of M_A have row sum n - 1 and the last *n* rows of M_A have row sum *n*. So the score vector of M_A is

$$M_A j_{2n} = \begin{bmatrix} (n-1)j_n \\ nj_n \end{bmatrix}.$$

Therefore, by definition, M_A is a near-regular tournament matrix.

	Types	Ranking	Big Example
00		00	
	0000		
Near-Regular Tournament Ma	trices		

Brualdi-Li Matrix

Near-regular tournament matrix of size 2m defined as

$$\mathcal{B}_{2m} = \begin{bmatrix} L_m & L_m^T \\ L_m^T + I_m & L_m \end{bmatrix}$$

э

	Types	Ranking	Big Example
00		00	
	0000		
Near-Regular Tournan	nent Matrices		

Brualdi-Li Matrix

Near-regular tournament matrix of size 2m defined as

$$\mathcal{B}_{2m} = \begin{bmatrix} L_m & L_m^T \\ L_m^T + I_m & L_m \end{bmatrix}$$

Properties:

- $ho(\mathcal{B}_{2m}) \ge
 ho(\mathcal{A})$ for every $2m \times 2m$ tournament matrix \mathcal{A}
- If ρ(B_{2m}) = ρ(A), PAP^T = B_{2m} where P is some permutation matrix
- Diagonalizable, though not unitarily
- First *m* entries of score vector are n-1. Last *m* entries are *m*.

	Perron-Frobenius	Ranking	Big Example
	•		
0000		0	

Perron-Frobenius Theorem

Theorem

Let M be a nonnegative, irreducible matrix. Then the spectral radius of M, $\rho(M)$, is a unique, positive eigenvalue for M, and there is an entrywise positive eigenvector v. Such a vector v is called the Perron vector for ρ .

	Types	Ranking	Big Example
00		••	
Ranking Schemes			

Let A be a tournament matrix of size n

	Types	Ranking	Big Example
		•••	
Ranking Schemes			

Let A be a tournament matrix of size n

► Suppose strength of team *i* is the sum of the scores that team *i* beats: ∑_{j=1}ⁿ [A]_{ij}s_j where s_j is the score of team *j* defeated by team *i*.

		Ranking	Big Example
		••	
	0000		
Ranking Schemes			

Let A be a tournament matrix of size n

Suppose strength of team *i* is the sum of the scores that team *i* beats: ∑_{j=1}ⁿ [A]_{ij}s_j where s_j is the score of team *j* defeated by team *i*.

•
$$\sum_{j=1}^{n} [A]_{ij} s_j = \sum_{j=1}^{n} ([A]_{ij} \sum_{k=1}^{n} [A]_{jk}) = \sum_{k=1}^{n} \sum_{j=1}^{n} [A]_{ij} [A]_{jk}$$

		Ranking	Big Example
00		•••	
Ranking Schemes			

Let A be a tournament matrix of size n

- Suppose strength of team *i* is the sum of the scores that team *i* beats: $\sum_{j=1}^{n} [A]_{ij} s_j$ where s_j is the score of team *j* defeated by
 - team i.
- $\sum_{j=1}^{n} [A]_{ij} s_j = \sum_{j=1}^{n} ([A]_{ij} \sum_{k=1}^{n} [A]_{jk}) = \sum_{k=1}^{n} \sum_{j=1}^{n} [A]_{ij} [A]_{jk}$
- ► This is the sum of all entries in the *ith* row of A² → A²j_n is the vector whose *ith* entry is the sum of the scores of all teams defeated by team *i*

		Ranking	Big Example
00		•••	
Ranking Schemes			

Let A be a tournament matrix of size n

- Suppose strength of team *i* is the sum of the scores that team *i* beats: $\sum_{j=1}^{n} [A]_{ij} s_j$ where s_j is the score of team *j* defeated by
 - team i.
- $\sum_{j=1}^{n} [A]_{ij} s_j = \sum_{j=1}^{n} ([A]_{ij} \sum_{k=1}^{n} [A]_{jk}) = \sum_{k=1}^{n} \sum_{j=1}^{n} [A]_{ij} [A]_{jk}$
- ► This is the sum of all entries in the *ith* row of A² → A²j_n is the vector whose *ith* entry is the sum of the scores of all teams defeated by team *i*
- Continue process up to A^k j_n where k is an arbitrary positive integer pause

►
$$\lim_{k\to\infty} \frac{A^{k}j_{n}}{||A^{k}j_{n}||} =$$
Perron vector v (Power Method)

		Ranking	Big Example
00		00	

Ramanujacharyula Ranking

		Ranking	Big Example
		00	
B 11 61			

Ramanujacharyula Ranking

Let A be a tournament matrix of size n

Strength to weakness ratio

		Ranking	Big Example
		00	
	0000		
B 11 61			

Ramanujacharyula Ranking

Let A be a tournament matrix of size n

- Strength to weakness ratio
- Strength determined by right Perron vector v ($Av = \rho v$)
- Weakness determined by left Perron vector $w (w^T A = \rho w^T)$

$$\blacktriangleright w = \lim_{k \to \infty} \frac{j_n^T A^k}{||j_n^T A^k||}$$

		Ranking	Big Example
		00	
	0000		
B 11 61			

Ramanujacharyula Ranking

Let A be a tournament matrix of size n

- Strength to weakness ratio
- Strength determined by right Perron vector v ($Av = \rho v$)
- Weakness determined by left Perron vector $w (w^T A = \rho w^T)$

•
$$w = \lim_{k \to \infty} \frac{j_n^T A^k}{||j_n^T A^k||}$$

• Team *i* is stronger than team *j* if $v_i/w_i > v_j/w_j$.

		Ranking	Big Example
00		00	
0000	00	•0	
Brualdi-Li Matrix			

Brualdi-Li Matrix and Rankings

Let \mathcal{B}_{2m} be the Brualdi-Li matrix of size 2m with right Perron vector v and left Perron vector w

 $v_{2m} < v_{2m-1} < v_{2m-2} < \dots < v_{m+1} < v_1 < v_2 < \dots < v_m$

▶ Ramanujacharyula Ranking: $\frac{v_m}{w_m} < \frac{v_1}{w_1} < \frac{v_{m-1}}{w_{m-1}} < \frac{v_2}{w_2} < \frac{v_{m-2}}{w_{m-2}} < \dots < \frac{v_{m/2}}{w_{m/2}} < 1,$ $1 < \frac{v_{2m-m/2+1}}{w_{2m-m/2+1}} < \dots < \frac{v_{m+3}}{w_{m+3}} < \frac{v_{2m-1}}{w_{2m-1}} < \frac{v_{2m}}{w_{2m}} < \frac{v_{m+1}}{w_{m+1}}$ where m/2 is rounded up if m is odd

		Ranking	Big Example
		00	
	0000		
Brualdi-Li Matrix			

Properties:

Tournament Matrices

▶ Both ranking schemes of B_{2m} agree with ranking via score vector

		Ranking	Big Example
		00	
	0000		
Brualdi-Li Matrix			

Properties:

- ▶ Both ranking schemes of B_{2m} agree with ranking via score vector
- Among all touraments with an even number of teams, the Brualdi-Li Matrix has minimal variation in rankings (well-matched teams)

		Ranking	Big Example
		00	
	0000		
Brualdi-Li Matrix			

Properties:

- ▶ Both ranking schemes of B_{2m} agree with ranking via score vector
- Among all touraments with an even number of teams, the Brualdi-Li Matrix has minimal variation in rankings (well-matched teams)
- Left Perron vector and right Perron vector are transposes of eachother

	Ranking	Big Example
0000	•	

Probabilities

Let v be the Perron vector of a tournament matrix A

- Probability team *i* beats team *j* is $\pi_{ij} = \frac{v_i}{v_i + v_i}$
- Generalized tournament matrix $G: [G]_{ij} = \pi_{ij}$

		Ranking	Big Example
00		00	
0000	00 0000	00	

Big Example

Consider \mathcal{B}_{12} :

0	0	0	0	0	0	1	1	1	1	1]
0	0	0	0	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	1	1	1
1	1	0	0	0	0	0	0	0	1	1
1	1	1	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0
1	1	1	1	1	1	0	0	0	0	0
0	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	0	0	0
0	0	0	1	1	1	1	1	1	0	0
0	0	0	0	1	1	1	1	1	1	0
	0 1 1 1 1 1 1 0 0 0 0	0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	$\begin{array}{cccccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ 0 \ \ 0 \ \ 0 \ \ 0 \ \ $	$ 0 \ \ \ 0 \ \ 0 \ \ 0 \ \ $

<ロ> <同> <同> < 同> < 同>

æ

	Ranking	Big Example

The right Perron vector is

$$v = \lim_{k \to \infty} \frac{\mathcal{B}_{12}^{k} \mathbf{1}_{12}}{||\mathcal{B}_{12}^{k} \mathbf{1}_{12}||} =$$
[.282 .279 .275 .269 .261 .250 .296 .298 .302 .307 .313 .323]
and the left Perron vector is

$$w = \lim_{k \to \infty} \frac{1_{12}^T \mathcal{B}_{12}^k}{||1_{12}^T \mathcal{B}_{12}^k||} =$$
[.323 .313 .307 .302 .298 .296 .250 .261 .269 .275 .279 .282]

with decimals rounded to three significant figures.

	Ranking	Big Example

Strength to weakness ratios

$$\frac{v_6}{w_6} = .845 < \frac{v_1}{w_1} = .873 < \frac{v_5}{w_5} = .876 < \frac{v_2}{w_2} = .890 < \frac{v_4}{w_4} = .891 < \frac{v_3}{w_3} = .896 < 1$$

$$1 < \frac{v_{10}}{w_{10}} = 1.116 < \frac{v_9}{w_9} = 1.122 < \frac{v_{11}}{w_{11}} = 1.123 < \frac{v_8}{w_8} = 1.142 < \frac{v_{12}}{w_{12}} = 1.145 < \frac{v_7}{w_7} = 1.184$$

<ロ> <同> <同> < 同> < 同>

æ

		Ranking	Big Example
00		00	

Ranking according to Kendall-Wei:

12, 11, 10, 9, 8, 7, 1, 2, 3, 4, 5, 6

Ranking according to Ramanucharyula:

7, 12, 8, 11, 9, 10, 3, 4, 2, 5, 1, 6.

		Ranking	Big Example
00		00	

Generalized Tournament Matrix:

ΓO	.503	.506	.512	.519	.530	.488	.486	.483	.479	.474	.466
.497	0	.504	.509	.517	.527	.485	.484	.480	.476	.471	.463
.494	.496	0	.506	.513	.524	.482	.480	.477	.473	.468	.460
.488	.491	.494	0	.507	.518	.476	.474	.471	.467	.462	.454
.481	.483	.487	.493	0	.511	.469	.467	.464	.460	.455	.447
.470	.473	.476	.482	.489	0	.458	.456	.453	.449	.444	.436
.512	.515	.518	.524	.531	.542	0	.498	.495	.491	.486	.478
.514	.516	.520	.526	.533	.544	.502	0	.497	.493	.488	.480
.517	.520	.523	.529	.536	.547	.505	.503	0	.496	.491	.483
.521	.524	.527	.533	.540	.551	.509	.507	.504	0	.495	.487
.526	.529	.532	.538	.545	.556	.514	.512	.509	.505	0	.492
.534	.537	.540	.546	.553	.564	.522	.520	.517	.513	.508	0