Tournament Matrices

Imanuel Chen

Tournaments

- Digraph that represents the outcome of a round-robin tournament

Tournaments

- Digraph that represents the outcome of a round-robin tournament
- Vertices are teams
- Edges denotes the victor between two teams
- K_{n} with direction

Graph Theory

Example

Tournament Matrices

- Adjacency matrix of a tournament

Tournament Matrices

- Adjacency matrix of a tournament
- 1's represent wins, 0's represent losses

0000

Properties

Let A be a tournament matrix of size $n \times n$

- $[A]_{i i}=0$ for $1 \leq i \leq n$
- $[A]_{i j}+[A]_{j i}=1$ for $1 \leq i<j \leq n$
- $A+A^{T}=J_{n}-I_{n}$
$-\sum_{i=1}^{n} \sum_{j=1}^{n}[A]_{i j}=\binom{n}{2}$

Row and Column Sums

- Row sum vector $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ where $r_{i}=\sum_{j=1}^{n}[A]_{i j}$
- r_{i} represents the number of wins team i has
- Also known as the score vector
- $R=R(A)=A j_{n}$

Row and Column Sums

- Row sum vector $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ where $r_{i}=\sum_{j=1}^{n}[A]_{i j}$
- r_{i} represents the number of wins team i has
- Also known as the score vector
- $R=R(A)=A j_{n}$
- Column sum vector $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ where $s_{i}=\sum_{i=1}^{n}[A]_{i j}$
- s_{i} represents the number of losses team i has

Matrix Form

Example

$$
\left[\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Generalized Tournament Matrices

Generalized Tournament Matrices

- Tournament matrix where the values of the entries are 0 and 1 inclusive
- Entries are the probabilities that one team will defeat another

Regular Tournament Matrices

A tournament matrix A of size n with score vector R is a regular tournament matrix if

- n is odd
- Every entry of R is $(n-1) / 2$

Example:

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Properties

- Nonsingular
- Irreducible ($P A P^{T} \neq$ block upper-triangular matrix)

Properties

- Nonsingular
- Irreducible ($P A P^{T} \neq$ block upper-triangular matrix $)$
- $\operatorname{Normal}\left(A A^{*}=A^{*} A\right)$
- Unitarily Diagonalizable ($U A U^{*}=$ diagonal matrix)

Properties

- Nonsingular
- Irreducible ($P A P^{T} \neq$ block upper-triangular matrix $)$
- Normal $\left(A A^{*}=A^{*} A\right)$
- Unitarily Diagonalizable ($U A U^{*}=$ diagonal matrix)
- Spectral radius $\rho=\rho(A)=(n-1) / 2$
- $A j_{n}=\rho j_{n}$
- Tournament matrices of size n where n is odd with the largest spectral radius are regular

Near-Regular Tournament Matrices

A tournament matrix A of size n with score vector R is a near-regular tournament matrix if

- n is even
- Half the entries of R are $(n-2) / 2$ and the other half are $n / 2$

Example: $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$

Near-Regular Tournament Matrices

Construction

Construction

Theorem
Let A be any $n \times n$ tournament matrix. Then,

$$
M_{A}=\left[\begin{array}{cc}
A & A^{T} \\
A^{T}+I_{n} & A
\end{array}\right]
$$

is a $2 n \times 2 n$ near-regular tournament matrix.

Proof.

Since $A+A^{T}=J_{n}-I_{n}$, the first n rows of M_{A} have row sum $n-1$ and the last n rows of M_{A} have row sum n. So the score vector of M_{A} is

$$
M_{A \dot{j}_{2 n}}=\left[\begin{array}{c}
(n-1) j_{n} \\
n j_{n}
\end{array}\right] .
$$

Therefore, by definition, M_{A} is a near-regular tournament matrix.

Brualdi-Li Matrix

Near-regular tournament matrix of size $2 m$ defined as

$$
\mathcal{B}_{2 m}=\left[\begin{array}{cc}
L_{m} & L_{m}^{T} \\
L_{m}^{T}+I_{m} & L_{m}
\end{array}\right]
$$

Brualdi-Li Matrix

Near-regular tournament matrix of size $2 m$ defined as

$$
\mathcal{B}_{2 m}=\left[\begin{array}{cc}
L_{m} & L_{m}^{T} \\
L_{m}^{T}+I_{m} & L_{m}
\end{array}\right]
$$

Properties:

- $\rho\left(\mathcal{B}_{2 m}\right) \geq \rho(A)$ for every $2 m \times 2 m$ tournament matrix A
- If $\rho\left(\mathcal{B}_{2 m}\right)=\rho(A), \operatorname{PAP}^{T}=\mathcal{B}_{2 m}$ where P is some permutation matrix
- Diagonalizable, though not unitarily
- First m entries of score vector are $n-1$. Last m entries are m.

Perron-Frobenius Theorem

Theorem
Let M be a nonnegative, irreducible matrix. Then the spectral radius of $M, \rho(M)$, is a unique, positive eigenvalue for M, and there is an entrywise positive eigenvector v. Such a vector v is called the Perron vector for ρ.

Kendall-Wei Ranking

Let A be a tournament matrix of size n

Kendall-Wei Ranking

Let A be a tournament matrix of size n

- Suppose strength of team i is the sum of the scores that team i beats: $\sum_{j=1}^{n}[A]_{i j} s_{j}$ where s_{j} is the score of team j defeated by team i.

Kendall-Wei Ranking

Let A be a tournament matrix of size n

- Suppose strength of team i is the sum of the scores that team i beats: $\sum_{j=1}^{n}[A]_{i j} s_{j}$ where s_{j} is the score of team j defeated by team i.
- $\sum_{j=1}^{n}[A]_{i j} s_{j}=\sum_{j=1}^{n}\left([A]_{i j} \sum_{k=1}^{n}[A]_{j k}\right)=\sum_{k=1}^{n} \sum_{j=1}^{n}[A]_{i j}[A]_{j k}$

Kendall-Wei Ranking

Let A be a tournament matrix of size n

- Suppose strength of team i is the sum of the scores that team i beats: $\sum_{j=1}^{n}[A]_{i j} s_{j}$ where s_{j} is the score of team j defeated by team i.
- $\sum_{j=1}^{n}[A]_{i j} s_{j}=\sum_{j=1}^{n}\left([A]_{i j} \sum_{k=1}^{n}[A]_{j k}\right)=\sum_{k=1}^{n} \sum_{j=1}^{n}[A]_{i j}[A]_{j k}$
- This is the sum of all entries in the $i^{t h}$ row of $A^{2} \rightarrow A^{2} j_{n}$ is the vector whose $i^{\text {th }}$ entry is the sum of the scores of all teams defeated by team i

Kendall-Wei Ranking

Let A be a tournament matrix of size n

- Suppose strength of team i is the sum of the scores that team i beats: $\sum_{j=1}^{n}[A]_{i j} s_{j}$ where s_{j} is the score of team j defeated by team i.
- $\sum_{j=1}^{n}[A]_{i j} S_{j}=\sum_{j=1}^{n}\left([A]_{i j} \sum_{k=1}^{n}[A]_{j k}\right)=\sum_{k=1}^{n} \sum_{j=1}^{n}[A]_{i j}[A]_{j k}$
- This is the sum of all entries in the $i^{t h}$ row of $A^{2} \rightarrow A^{2} j_{n}$ is the vector whose $i^{\text {th }}$ entry is the sum of the scores of all teams defeated by team i
- Continue process up to $A^{k} j_{n}$ where k is an arbitrary positive integer pause
$-\lim _{k \rightarrow \infty} \frac{A^{k} j_{n}}{\left\|A^{k} j_{n}\right\|}=$ Perron vector v (Power Method)

Ramanujacharyula Ranking

Ramanujacharyula Ranking

Let A be a tournament matrix of size n

- Strength to weakness ratio

Ramanujacharyula Ranking

Let A be a tournament matrix of size n

- Strength to weakness ratio
- Strength determined by right Perron vector $v(A v=\rho v)$
- Weakness determined by left Perron vector $w\left(w^{T} A=\rho w^{T}\right)$
- $w=\lim _{k \rightarrow \infty} \frac{j_{n}^{T} A^{k}}{\left\|j_{n}^{T} A^{k}\right\|}$

Ramanujacharyula Ranking

Let A be a tournament matrix of size n

- Strength to weakness ratio
- Strength determined by right Perron vector $v(A v=\rho v)$
- Weakness determined by left Perron vector $w\left(w^{T} A=\rho w^{T}\right)$
- $w=\lim _{k \rightarrow \infty} \frac{j_{n}^{T} A^{k}}{\left\|j_{n}^{T} A^{k}\right\|}$
- Team i is stronger than team j if $v_{i} / w_{i}>v_{j} / w_{j}$.
$\circ O$
-0

Brualdi-Li Matrix and Rankings

Let $\mathcal{B}_{2 m}$ be the Brualdi-Li matrix of size $2 m$ with right Perron vector v and left Perron vector w

- Kendall-Wei Ranking:

$$
v_{2 m}<v_{2 m-1}<v_{2 m-2}<\ldots<v_{m+1}<v_{1}<v_{2}<\ldots<v_{m}
$$

- Ramanujacharyula Ranking:

$$
\begin{aligned}
& \frac{v_{m}}{w_{m}}<\frac{v_{1}}{w_{1}}<\frac{v_{m-1}}{w_{m-1}}<\frac{v_{2}}{w_{2}}<\frac{v_{m-2}}{w_{m-2}}<\ldots<\frac{v_{m / 2}}{w_{m / 2}}<1, \\
& 1<\frac{v_{2 m-m / 2+1}}{w_{2 m-m / 2+1}}<\ldots<\frac{v_{m+3}}{w_{m+3}}<\frac{v_{2 m-1}}{w_{2 m-1}}<\frac{v_{2 m}}{w_{2 m}}<\frac{v_{m+1}}{w_{m+1}}
\end{aligned}
$$

where $m / 2$ is rounded up if m is odd

Properties:

- Both ranking schemes of $\mathcal{B}_{2 m}$ agree with ranking via score vector

Properties:

- Both ranking schemes of $\mathcal{B}_{2 m}$ agree with ranking via score vector
- Among all touraments with an even number of teams, the Brualdi-Li Matrix has minimal variation in rankings (well-matched teams)

Properties:

- Both ranking schemes of $\mathcal{B}_{2 m}$ agree with ranking via score vector
- Among all touraments with an even number of teams, the Brualdi-Li Matrix has minimal variation in rankings (well-matched teams)
- Left Perron vector and right Perron vector are transposes of eachother

Probabilities

Let v be the Perron vector of a tournament matrix A

- Probability team i beats team j is $\pi_{i j}=\frac{v_{i}}{v_{i}+v_{j}}$
- Generalized tournament matrix $G:[G]_{i j}=\pi_{i j}$

Big Example
Consider \mathcal{B}_{12} :

$$
\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

The right Perron vector is

$\mathcal{B}_{12}^{\kappa} 1_{12}$												
						$\left.\right\|_{12} ^{k} 1^{\prime}$						
[. 282	. 279	. 275	. 269	. 261	. 250	. 296	. 298	. 302	. 307	. 313		323

with decimals rounded to three significant figures.

Strength to weakness ratios

$$
\begin{gathered}
\frac{v_{6}}{w_{6}}=.845<\frac{v_{1}}{w_{1}}=.873<\frac{v_{5}}{w_{5}}=.876<\frac{v_{2}}{w_{2}}=.890<\frac{v_{4}}{w_{4}}= \\
.891<\frac{v_{3}}{w_{3}}=.896<1 \\
1<\frac{v_{10}}{w_{10}}=1.116<\frac{v_{9}}{w_{9}}=1.122<\frac{v_{11}}{w_{11}}=1.123<\frac{v_{8}}{w_{8}}=1.142< \\
\frac{v_{12}}{w_{12}}=1.145<\frac{v_{7}}{w_{7}}=1.184
\end{gathered}
$$

Ranking according to Kendall-Wei:

$$
12,11,10,9,8,7,1,2,3,4,5,6
$$

Ranking according to Ramanucharyula:

$$
7,12,8,11,9,10,3,4,2,5,1,6 .
$$

Generalized Tournament Matrix:
$\left[\begin{array}{cccccccccccc}0 & .503 & .506 & .512 & .519 & .530 & .488 & .486 & .483 & .479 & .474 & .466 \\ .497 & 0 & .504 & .509 & .517 & .527 & .485 & .484 & .480 & .476 & .471 & .463 \\ .494 & .496 & 0 & .506 & .513 & .524 & .482 & .480 & .477 & .473 & .468 & .460 \\ .488 & .491 & .494 & 0 & .507 & .518 & .476 & .474 & .471 & .467 & .462 & .454 \\ .481 & .483 & .487 & .493 & 0 & .511 & .469 & .467 & .464 & .460 & .455 & .447 \\ .470 & .473 & .476 & .482 & .489 & 0 & .458 & .456 & .453 & .449 & .444 & .436 \\ .512 & .515 & .518 & .524 & .531 & .542 & 0 & .498 & .495 & .491 & .486 & .478 \\ .514 & .516 & .520 & .526 & .533 & .544 & .502 & 0 & .497 & .493 & .488 & .480 \\ .517 & .520 & .523 & .529 & .536 & .547 & .505 & .503 & 0 & .496 & .491 & .483 \\ .521 & .524 & .527 & .533 & .540 & .551 & .509 & .507 & .504 & 0 & .495 & .487 \\ .526 & .529 & .532 & .538 & .545 & .556 & .514 & .512 & .509 & .505 & 0 & .492 \\ .534 & .537 & .540 & .546 & .553 & .564 & .522 & .520 & .517 & .513 & .508 & 0\end{array}\right]$

