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Polynomials

Given a field F, we denote the set of all polynomials with
coefficients in F by F[x].

Eg.

• f(x) = x4 − 5
9x

3 + 5 ∈ Q[x]

• g(x) = πx3 − ex2 + i ∈ C[x]
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Irreducible Polynomials

Definition
A non-constant polynomial f(x) ∈ F[x] is irreducible if there
are no g(x), h(x) ∈ F[x], where the degrees of g(x) and h(x) are
both less than the degree of f(x), such that f(x) = g(x)h(x).

For our purposes, think of irreducible polynomials as equivalent
to prime numbers.
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Irreducible examples

Consider Q[x], R[x], and C[x]:

• x2 − 2: irreducible in Q[x]

• x3 − 15x2 − 45x+ 21: irreducible in Q[x]

• x2 + 1: irreducible in R[x] and Q[x]

Which polynomials are irreducible in C[x]: only linear factors.
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Irreducible Factors

What is important about irreducible polynomials?

Theorem
Let f(x) ∈ F[x] be a non-constant polynomial. Then f(x) is a
unique (up to order) product of irreducible factors.

Think about this like an integer being a product of prime
numbers.
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Monic Polynomials

Definition
A polynomial f(x) ∈ F[x] is monic if its leading coefficient is 1.

Eg.

• f(x) = x4 + 3x3 − 1 is monic

• g(x) = 2x7 − 6x3 is not monic
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Endomorphisms

Minimum polynomials are only used for a specific type of linear
transformation: endomorphisms.

Definition
An endomorphism T is a linear transformation mapping from a
vector space V onto itself (i.e. T : V → V ). For a vector space
V , we shall denote the set of all endomorphisms of V as
End(V ).
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More Endomorphisms

Remark
Notice that for R,S ∈ End(V ), their composition, R ◦ S, is also
an endomorphism. Also, for α ∈ F, αR ∈ End(V ).

We denote the nth iterate of T by

Tn = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n times

.

From the previous two remarks, we can see that for
T ∈ End(V ) and p(x) ∈ F[x], then

p(T ) ∈ End(V ).
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Annihilator Polynomial

Theorem
Let V be a vector space of dimension n, v ∈ V a non-zero
vector, and T an endomorphism of V . Then there is a unique
monic polynomial of minimum degree, mT,v(x), such that
mT,v(v) = 0. This polynomial has degree at most n.

This polynomial, mT,v(x), is called the T -annihilator
polynomial for v.
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Proof of Annihilator Polynomial

Proof Sketch

• The set {Tn(v), Tn−1(v), ..., T (v), v} is a set of n+ 1
vectors in an n-dimensional vector space, and must be
linearly dependent.

• There exist scalars an, ..., a1, a0 such that

anT
n(v) + · · ·+ a1T (v) + a0v = 0.

• Define f(x) = anx
n + · · ·+ a1x+ a0. We can make this

polynomial monic and show it satisfies the other properties
of the T -annihilator polynomial of v.
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Minimum Polynomial

Theorem
Let V be an n-dimensional vector space, and T and
endomorphism of V . Then there exists a unique monic
polynomial of minimum degree, mT (x), such that mT (v) = 0 for
every v ∈ V . This polynomial has degree at most n.

We call this polynomial, mT (x), the minimum polynomial of T .
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Characteristic Polynomial

Definition
For an endomorphism T of V with matrix representation [T ]B
relative to basis B, the characteristic polynomial of T , cT (x), is
the polynomial

cT (x) = det (xI − [T ]B).

Theorem
If A and B be similar matrices, then the characteristic
polynomials of A and B, cA(x) and cB(x), are equal.

We can see that the characteristic polynomial of T is a
well-defined polynomial.



Polynomial Basics Endomorphisms Minimum Polynomial Building Linear Transformations Invariant Subspaces via Minimum Polynomial

Characteristic Polynomial

Definition
For an endomorphism T of V with matrix representation [T ]B
relative to basis B, the characteristic polynomial of T , cT (x), is
the polynomial

cT (x) = det (xI − [T ]B).

Theorem
If A and B be similar matrices, then the characteristic
polynomials of A and B, cA(x) and cB(x), are equal.

We can see that the characteristic polynomial of T is a
well-defined polynomial.



Polynomial Basics Endomorphisms Minimum Polynomial Building Linear Transformations Invariant Subspaces via Minimum Polynomial

Companion Matrix

Definition
Let f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 be a monic
polynomial of degree n ≥ 1. Then the companion matrix of
f(x), C(f(x)), is the n× n matrix

C(f(x)) =


−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

...
. . .

−a1 0 0 · · · 1
−a0 0 0 · · · 0

 ,

where the 1’s are located on the super-diagonal.
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Applications of Companion Matrix

Why do we care about the Companion Matrix?

Theorem
Let f(x) be a polynomial, and A = C(f(x)) its companion
matrix. Then cA(x) = det (xI −A) = f(x). Further,
mA(x) = f(x).

We can create linear transformations with eigenvalue properties
we want.
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Building Endomorphisms

Suppose we want a linear transformation, T , with eigenvalues
λ = −1, 3, 4, and algebraic multiplicities
α(−1) = α(3) = α(4) = 1.

• First build cT (x) :

cT (x) = (x+ 1)(x− 3)(x− 4) = x3 − 6x2 + 5x+ 12

• Then build C(cT (x)) :

C(cT (x)) =

 6 1 0
−5 0 1
−12 0 0


• Boom.
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Another Example

Let’s do a larger example: cT (x) = (x2 + 2)2(x4 + 1).

Then

C(cT (x)) =



0 1 0 0 0 0 0 0
−4 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
−5 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
−4 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
−4 0 0 0 0 0 0 0


.

This linear transformation preserves eigenvalues and algebraic
multiplicities of eigenvalues.
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Relationship between mT (x) and cT (x)

So far, our examples have shown that mT (x) = cT (x). This is
not true in general.

Consider

T =

 3 3 3
4 4 4
5 5 5

 .

Then cT (x) = x2(x− 12). However, we can compute that

ker (T (T − 12I)) = Q3.

We will see that this implies

mT (x) = x(x− 12),

and mT (x) 6= cT (x).
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Relationship between mT (x) and cT (x)

Theorem
Let V be a finite-dimensional vector space, and T and
endomorphism of V . Let mT (x) and cT (x) be the minimum and
characteristic polynomials of T , respectively. Then mT (x)
divides cT (x), and every irreducible factor of cT (x) is also an
irreducible factor of mT (x).
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Kernels of Polynomials

Theorem
Let V be an n-dimensional vector space, T and endomorphism
of V , and p(x) ∈ F[x]. Then,

ker (p(T )) = {v ∈ V : p(T )(v) = 0}

is a T -invariant subspace of V .
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Direct Sums via Minimum Polynomials

For a special case of an endomorphism, we can use the minimum
polynomial to write V as the direct sum of invariant subspaces.

Theorem
Let V be a vector space, and T an endomorphism of V .
Suppose mT (x) factors into pairwise relatively prime
polynomials mT (x) = p1(x)p2(x) · · · pk(x). For each i, let
Wi = ker (pi(T )). Then each Wi is T -invariant, and

V = W1 ⊕W2 ⊕ · · · ⊕Wk.
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Last Example

Recall

A =

 6 1 0
−5 0 1
−12 0 0

 .

Then, mA(x) = (x+ 1)(x− 3)(x− 4).

We know

Q3 = ker (T + 1)⊕ ker (T − 3)⊕ ker (T − 4)

=

 1
−1

1

⊕
 9

3
1

⊕
 16

4
1

 .
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