Solving Toeplitz Systems of Equations and the Importance of Conditioning

Andrew Doss

April 27, 2014

1 Toeplitz Matrices

2 Conditioning

3 Matrix Norms

4 Block Gaussian Elimination

5 Large Example

6 Conclusion

1 Toeplitz Matrices

2 Conditioning

3 Matrix Norms

4 Block Gaussian Elimination

5 Large Example

6 Conclusion

- A Toeplitz Matrix or Diagonal Constant Matrix is a $n \times n$ matrix where each of the descending diagonals are constant, where
- $T_{n}=\left[\begin{array}{cccc}t_{0} & t_{-1} & \cdots & t_{-n+1} \\ t_{1} & t_{0} & \ddots & t_{-2} \\ \vdots & \ddots & \ddots & \vdots \\ t_{n-1} & t_{n-2} & \cdots & t_{0}\end{array}\right]$

■ eigenvectors of Toeplitz matrices are sines and cosines

- Toeplitz matrices are also related to Fast Fourier Tranforms (FFT) and when looking at images and signals processing, Fourier Transforms, Hilbert Spaces, and problems involving trigometric moments.

Definition 1.1

Let A be an $n \times n$ matrix such that A is persymmetric if it is symmetric about its anti-diagonal

Definition 1.2

Let A be a $n \times n$ matrix such that Ais centrosymmetric if it is symmetric about the center

Definition 1.3

Let A be a $n \times n$ matrix. A is bisymmetric if only if A is centrosymmetric and either symmetric or antisymmetric

1 Toeplitz Matrices

2 Conditioning

3 Matrix Norms

4 Block Gaussian Elimination

5 Large Example

6 Conclusion

What is conditioning? Why does it matter?
The Conditioning Number of a Matrix

$$
\begin{equation*}
\kappa(A)=\|A\|\left\|A^{-1}\right\| \geq 1 \tag{1}
\end{equation*}
$$

- if $\kappa(A)$ is large than the matrix A is ill-conditioned
- if $\kappa(A)$ is small than the matrix A is well-conditioned

1 Toeplitz Matrices

2 Conditioning

3 Matrix Norms

4 Block Gaussian Elimination

5 Large Example

6 Conclusion

Matrix Norms How do we calculate a Matrix Norm? There are three commonly used norms

1-Norm

Let A be an $m \times n$ matrix. The 1 -norm, $\|A\|_{1}$ is equal to the maximum column sum or for $1 \leq j \leq n$ and a_{j} is the j th column of A

$$
\begin{equation*}
\|A\|_{1}=\max _{j} \sum_{k=1}^{n} a_{k j} \tag{2}
\end{equation*}
$$

Matrix Norms

2-Norm

Let A be an $m \times n$ matrix. The 1 -norm, $\|A\|_{2}$ is equal to the largest singular value of A

$$
\begin{equation*}
\|A\|_{2}=\max _{i} \delta \tag{3}
\end{equation*}
$$

Matrix Norms

∞-Norm

Let A be an $m \times n$ matrix. The 1 -norm, $\|A\|_{\infty}$ is equal to the maximum row sum or for $1 \leq i \leq m$ and a_{i} is the i th row of A

$$
\begin{equation*}
\|A\|_{\infty}=\max _{i} \sum_{k=1}^{m} a_{i k} \tag{4}
\end{equation*}
$$

2 Conditioning

3 Matrix Norms

4 Block Gaussian Elimination

6 Conclusion

Why would we choose block Gaussian elimination compared to other algorithms? What is block Gaussian elimination?

Block Gaussian Elimination

Suppose we have the system $T x=b$ where T is Toeplitz, symmetric and nonsingular. Then partition T

$$
T_{x}=\left[\begin{array}{ll}
A & B \tag{5}\\
C & D
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\tilde{x}
\end{array}\right]=\left[\begin{array}{l}
\hat{b} \\
\breve{b}
\end{array}\right]=b
$$

where x and b are $n \times 1, A$ is $(k x k), B$ is $k x(n-k), C$ is $(n-k) \times k, \mathrm{D}$ is $(n-k) \times(n-k), \hat{x}$ and \hat{b} are $k \times 1$ and \breve{x} and \breve{b} are $(n-k) \times 1$.

Block Gaussian Elimination

we then use block Gaussian elimination to break our new partition matrix into an upper and lower triangular matrices

$$
\left[\begin{array}{ll}
A & B \tag{6}\\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
0 & \Delta
\end{array}\right]
$$

Where $\Delta=D-C A^{-1} B$, and

$$
\left[\begin{array}{ll}
A & B \tag{7}\\
0 & \Delta
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\breve{x}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
-C A^{-1} & I
\end{array}\right]\left[\begin{array}{l}
\hat{b} \\
\breve{b}
\end{array}\right]=\left[\begin{array}{c}
\hat{x} \\
\breve{x}-C A^{-1} \hat{x}
\end{array}\right]
$$

Block Gaussian Elimination

We then solve for \hat{x} and \check{x} by

1. Solving $A X=C$ for X, where X is $(n-k) \times k$ matrix
2. Forming $\Delta=D-X B$
3. Forming $\breve{c}=\breve{b}-X \hat{b}$
4. Solving $\Delta \breve{x}=\breve{c}$ for \breve{x}
5. Forming $\hat{c}=\hat{b}-B \hat{x}$ and
6. Solving $A \hat{x}=\hat{c}$ for \hat{x}.

Though this method is pretty stable there can be problems

Block Gaussian Elimination

The biggest problem with block Gaussian elimination is that even if T is well-conditioned, A can be ill-conditioned. There is only one class of matrices that proves that to be truesymmetric, positive-definite matrices, or Hermitian in the complex case.
let us take the 2 -norm of both T and A

$$
\begin{align*}
\kappa_{2}(T) & =\frac{\sigma_{\max }(T)}{\sigma_{\min }(T)} \tag{8}\\
\kappa_{2}(A) & =\frac{\sigma_{\max }(A)}{\sigma_{\min }(A)} \tag{9}
\end{align*}
$$

where $\sigma_{\text {max }}$ is the largest singular value and $\sigma_{\text {min }}$ is the smallest. Since T and A are symmetric positive definite, $\sigma_{\max }(T)=\lambda_{\max }(T), \sigma_{\min }(T)=\lambda_{\min }(T), \sigma_{\max }(A)=\lambda_{\max }(A)$, $\sigma_{\text {min }}(A)=\lambda_{\text {min }}(A)$, where $\lambda_{\text {max }}$ is the largest eigenvalue and $\lambda_{\text {min }}$ is the smallest

Block Gaussian Elimation

Cauchy Interlace Theorem

Let A be a symmetric $n \times n$ matrix. Let B an $m \times m$ matrix where $m \leq n$. Let B also be the compression of A. If the eigenvalues of A are $\alpha_{1} \leq \cdots \leq \alpha_{n}$, and those of B are $\beta_{1} \leq \cdots \leq \beta_{j} \leq \cdots \leq \beta_{m}$ then for all $j<m+1$

Block Gaussian Elimination

From the Cauchy Interlace Theorem we know,

$$
\begin{equation*}
0<\lambda_{\min }(T) \leq \lambda_{\min }(A) \leq \lambda_{\max }(A) \leq \lambda_{\max }(T) \tag{10}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\kappa_{2}(A)=\frac{\lambda \max (A)}{\lambda \min (A)} \leq \frac{\lambda \max (T)}{\lambda \min (T)}=\kappa_{2}(T) \tag{11}
\end{equation*}
$$

Therefore if T is well-conditioned then A is also well-conditioned.

1 Toeplitz Matrices

2 Conditioning

3 Matrix Norms

4 Block Gaussian Elimination

5 Large Example

6 Conclusion

Consider the matrix

$$
T=\left[\begin{array}{cccccc}
1 & 2 & 0 & -1 & 5 & 8 \tag{12}\\
2 & 1 & 2 & 0 & -1 & 5 \\
0 & 2 & 1 & 2 & 0 & -1 \\
-1 & 0 & 2 & 1 & 2 & 0 \\
5 & -1 & 0 & 2 & 1 & 2 \\
8 & 5 & -1 & 0 & 2 & 1
\end{array}\right]
$$

where T is symmetric, nonsingular and positive-definite.

Before partitioning the matrix, check the conditioning

$$
\begin{gather*}
\|T\|_{1}=15 \tag{13}\\
\|T\|_{2} \approx 12.822 \tag{14}\\
\|T\|_{\infty}=15 \tag{15}\\
\left\|T^{-1}\right\|_{1} \approx .284 \tag{16}\\
\left\|T^{-1}\right\|_{2} \approx .784 \tag{17}\\
\left\|T^{-1}\right\|_{\infty} \approx .284 \tag{18}
\end{gather*}
$$

Knowing all three matrix norms, we compute the conditioning numbers

$$
\begin{align*}
\kappa(T)_{1}=\|T\|_{1}\left\|T^{-1}\right\|_{1}=(15)(.284) & =4.26 \tag{19}\\
\kappa(T)_{2}=\|T\|_{2}\left\|T^{-1}\right\|_{2}=(12.822)(.784) & =10.05 \tag{20}\\
\kappa(T)_{\infty}=\|T\|_{\infty}\left\|T^{-1}\right\|_{\infty}=(15)(.284) & =4.26 \tag{21}
\end{align*}
$$

Since $k(T)$ is relatively small then T is well-conditioned.

Paritition T

$$
\begin{array}{ll}
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 2 \\
0 & 2 & 1
\end{array}\right] & B=\left[\begin{array}{ccc}
-1 & 5 & 8 \\
0 & -1 & 5 \\
2 & 0 & -1
\end{array}\right] \\
C=\left[\begin{array}{ccc}
-1 & 0 & 2 \\
5 & -1 & 0 \\
8 & 5 & -1
\end{array}\right] & D=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& \hat{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \breve{x}=\left[\begin{array}{l}
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right] \\
& \hat{b}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \breve{b}=\left[\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right]
\end{aligned}
$$

now we calculate $C A^{-1}$ and Δ

$$
\begin{gather*}
C A^{-1}=\left[\begin{array}{ccc}
-\frac{11}{7} & \frac{2}{7} & \frac{10}{7} \\
\frac{13}{7} & \frac{11}{7} & -\frac{22}{7} \\
\frac{38}{7} & \frac{9}{7} & -\frac{25}{7}
\end{array}\right] \tag{22}\\
\Delta=D-C A^{-1} B=\left[\begin{array}{ccc}
-\frac{24}{7} & \frac{71}{7} & \frac{88}{7} \\
\frac{71}{7} & -\frac{47}{7} & -\frac{167}{7} \\
\frac{88}{7} & -\frac{167}{7} & -\frac{367}{7}
\end{array}\right] \tag{23}
\end{gather*}
$$

Now we solve for x

$$
\begin{gather*}
\breve{c}=\breve{b}-C A^{-1} \hat{b}=\left[\begin{array}{c}
\frac{19}{7} \\
-\frac{67}{7} \\
-\frac{65}{7}
\end{array}\right] \tag{24}\\
\breve{x}=\Delta^{-1} \breve{c}=\left[\begin{array}{c}
-\frac{9418}{7807} \\
-\frac{21}{7807} \\
-\frac{866}{7807}
\end{array}\right] \approx\left[\begin{array}{c}
-1.2063532727 \\
-0.00268989368515 \\
-0.110926091969
\end{array}\right] \tag{25}
\end{gather*}
$$

Since we have \breve{x}, we can finally solve for \hat{x}

$$
\hat{x}=A^{-1}(\hat{b}-B \breve{x})=\left[\begin{array}{c}
-\frac{22}{7877} \\
\frac{2727}{807} \\
\frac{7719}{7807}
\end{array}\right] \approx\left[\begin{array}{c}
-0.00281798386064 \\
0.348661457666 \\
0.604457538107
\end{array}\right]
$$

(26)

$$
x=\left[\begin{array}{l}
\hat{x} \tag{27}\\
\ddot{x}
\end{array}\right]=\left[\begin{array}{c}
-0.00281798386064 \\
0.348661457666 \\
0.604457538107 \\
1.2063532727 \\
-0.00268989368515 \\
-0.110926091969
\end{array}\right]
$$

1 Toeplitz Matrices

2 Conditioning

3 Matrix Norms

4 Block Gaussian Elimination

5 Large Example

6 Conclusion

- Block Gaussian Elimination uses $O\left(n^{2}\right)$ flops while preserving Toeplitz structure
- the block matrix A must be proven to be well-conditioned or else it can ruin your solution(s)

國 Trefethen，L．N．，Bau，D．（1997）．Numerical linear algebra．Philadelphia，PA：Society for Industrial and Applied Mathematics．

围 Horn，R．，Johnson，C．（1985）．Matrix analysis．（1 ed．）． New York，New York：Press Syndicate of the University of Cambridge．

軎 Bunch，J．（1985）．Stability of Methods for Solving Toeplitz Systems of Equations．Society for Industrial and Applied Mathematics，6（2），349－364．

囦 Luk，F．，Qiao，S．（1996）．A Symmetric Rank－Revealing Toeplitz Matrix Decomposition．Journal of VLSI Signal Processing，（8），1－9．

