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1 Introduction

In Linear Algebra, there is a tendency to generalize all matrices to certain groups: Hermitian,
Unitary, Nonsingular, Singular,etc., but not look at more specific classes of matrices. An im-
portant matrix found throughout mathematics and in real-world applications is the Toeplitz
matrix. This paper will review a few specific ways of solving Toeplitz systems of equations
using Block Gaussian Elimination. I will also address the importance of conditioning and
its effect on Toeplitz matrices.

2 Toeplitz Matrices

A Toeplitz Matrix or Diagonal Constant Matrix is a nxn matrix where each of the descending
diagonals are constant, where

Tn =


t0 t−1 · · · t−n+1

t1 t0
. . . t−2

...
. . . . . .

...
tn−1 tn−2 · · · t0


Another way of writing a Toeplitz matrix is

T =
n∑

k=1

a−kF
k +

n∑
k=0

akB
k

Where B and F are backward shift and forward shift matrices such that

B =


0 1 · · · 0

0
. . . . . .

...
...

. . . . . . 1
0 · · · · · · 0

 F =


0 0 · · · 0

1
. . . . . .

...
...

. . . . . . 1
0 · · · 1 0
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Some other common types of Toeplitz Matrices are Circulant Matrices and Hankel Matrices,
both which hold the same basic properties of a Toeplitz Matrix but have different additonal
properties. Hankel Matrices are matrices of the form

Hn =


h−3 h−2 h−1 h0
h−2 h−1 h0 h1
h−1 h0 h1 h2
h0 h1 h2 h3


Circulant Matrices are matrices of the form

Cn =


c0 cn−1 · · · c1

c1 c0
. . . c2

...
. . . . . .

...
cn−1 cn−2 · · · c0


We will only consider Toeplitz Matrices and not the Hankel and Circulant Matrix.
Toeplitz Matrices are persymmetric, they are also bisymmetric and centrosymmetric if the
matrix is a symmetric matrix. Toeplitz Matrices also commute aysmptotically, or diagonal-
ize in the same basis as n→∞. Their eigenvectors are sines and cosines. Toeplitz Systems
are also related to Fast Fourier Tranforms (FFT). Toeplitz matrices are seen through out
engineering, mathematics and science when looking at images and signals processing, Fourier
Transforms, Hilbert Spaces, and problems involving trigometric moments.

Definition 2.1. Let A be an n x n matrix such that A is persymmetric if it is symmetric
about its anti-diagonal

Definition 2.2. Let A be a n x n matrix such that A is centrosymmetric if it is symmetric
about the center

Definition 2.3. Let A be a n x n matrix. A is bisymmetric if only if A is centrosymmetric
and either symmetric or antisymmetric

3 Conditioning of a Matrix

In Numerical Linear Algebra, conditioning of a matrix is key to stablably solving any system
of equations. Conditioning dictates how stable a certain algorithm is for a certain system
of equations. Let M be an nxn nonsingular matrix so that the conditioning number of any
nonsingular matrix is,

κ(M) =
∥∥M∥∥∥∥M−1

∥∥
The equality above states that the conditioning number is defined by the multiplication of
two matrix norms, M and its inverse M−1. There are three common ways to solve matrix
norms, the 1-Norm, 2-Norm and the ∞-Norm.
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Definition 3.1. Let A be an m x n matrix. The 1-norm,
∥∥A∥∥

1
is equal to the maximum

column sum, or for 1 ≤ j ≤ n and aj is the jth column of A

∥∥A∥∥
1

= maxj

n∑
k=1

ak,j

Definition 3.2. Let A be an m x n matrix. The 2-norm,
∥∥A∥∥

2
is equal to the maximum

singular value of A or ∥∥A∥∥
2

= maxiδ

Definition 3.3. Let A be an m x n matrix. The ∞-norm,
∥∥A∥∥∞ is equal to the maximum

row sum or, for 1 ≤ i ≤ m and mi is the ith row of A

∥∥M∥∥∞ = max i

m∑
k=1

mi,k

M is well-conditioned if κ(M) is small; Since κ(M) ≥ 1, small or large is relative to 1.
Since all norms on a finite-dimensional space are equivalent, then which ever matrix norm
you choose small will stay small and large will remain large relative to 1. if M is singular,
κ(M) = ∞, so κ(M) is very large then M is near a singular matrix, and is ill-conditioned.
Thus if M is ill-conditioned then M is nearly singular.
if Mx = b and M̂x = b̂ and if

∥∥M − M̂∥∥ < 1 then∥∥x− x̂∥∥∥∥x∥∥ ≤

(
κ(M)

1− κ(M)(
∥∥M − M̂∥∥ /∥∥M∥∥

){∥∥M − M̂∥∥∥∥M∥∥ +

∥∥b− b̂∥∥∥∥b∥∥
}

if Mx = b is the problem we want to solve and M̂x = b̂ is the problem we have, then
the inequality generally states that the relative error of x̂ is approximately bounded by the
condition number of the matrix times the relative error in the matrix and the right hand sie.
Depending on how accurate we are required to be will change what is an acceptably large
condition number.

3.1 Example of Conditioning

Next to show conditioning and the condition number practice, consider the Toeplitz matrix,

A =


−1 −2 1 1 −1
−1 −1 −2 1 1
−1 −1 −1 −2 1
5 −1 −1 −1 −2
0 5 −1 −1 −1
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and its inverse,

A−1 =


− 83

298
− 15

298
− 45

298
31
298

− 39
298

− 41
298
− 11

298
− 33

298
− 17

298
31
298

− 27
298
−109

298
− 29

298
− 33

298
− 45

298

− 9
298

63
298

−109
298
− 11

298
− 15

298

−169
298
− 9

298
− 27

298
− 41

298
− 83

298


the 1-Norm, 2-Norm, and the ∞-Norm of A are

∥∥M∥∥
1

= maxj

n∑
k=1

ak,j = 2∥∥M∥∥
2

= maxiδ ≈ 2.355∥∥M∥∥∞ = max i

m∑
k=1

mi,k = 2

the the 1-Norm, 2-Norm, and the ∞-Norm of A−1 are

∥∥A−1∥∥
1

= maxj

n∑
k=1

∣∣a−1k,j

∣∣ ≈ 1.104∥∥A−1∥∥
2

= maxiδ ≈ .2031∥∥A−1∥∥∞ = max i

m∑
k=1

∣∣a−1i,k

∣∣ ≈ 1.104

Now knowing the norm of A and A−1, we can compute its condition number,

κ(A)1 =
∥∥A∥∥

1

∥∥A−1∥∥
1
≈ (2)(1.104) ≈ 2.208

κ(A)2 =
∥∥A∥∥

2

∥∥A−1∥∥
2
≈ (2.2355)(.2031) ≈ 0.4540

κ(A)∞ =
∥∥A∥∥∞ ∥∥A−1∥∥∞ ≈ (2)(1.104) ≈ 2.208

We can conclude that A is small relative to 1, therefore we can conclude that A is a well-
conditioned matrix.

4 Block Gaussian Elimination

We partition the system Tx = b, where T is a nonsingular and symmetric Toeplitz matrix,
into small systems

Mx =

[
A B
C D

] [
x̂
x̆

]
=

[
b̂

b̆

]
= b
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where x and b are nx1, A is (kxk), B is kx(n− k), C is (n− k)xk, D is (n− k)x(n− k), x̂
and b̂ are kx1 and x̆ and b̆ are (n− k)x1.
Using block Guassian elimination and asssuming A is nonsingular,[

A B
C D

]
=

[
I 0

CA−1 I

] [
A B
0 ∆

]
Where ∆ = D − CA−1B, and[

A B
C D

] [
x̂
x̆

]
=

[
I 0

−CA−1 I

] [
b̂

b̆

]
=

[
x̂

x̆− CA−1x̂

]
So we solve Tx = b by the following:

1. Solving AX = C for X, where X is (n− k)xk matrix

2. Forming ∆ = D −XB
3. Forming c̆ = b̆−Xb̂
4. Solving ∆x̆ = c̆ for x̆

5. Forming ĉ = b̂−Bx̂ and

6. Solving Ax̂ = ĉ for x̂.

If M is nonsingular then A does not have to be nonsingular. Since M and A are nonsingular,
∆ is guarenteed to be nonsingular since det(M) = det(A) det(∆).

4.1 Conditioning and Block Guassian Elimination

Though M might be well-conditioned, this does not produce instant stability for the algo-
rithm. If A is also well-conditioned then the algorithm will be generally stable. The only
class of matrices that would produce a well-conditioned A is a symmetric positive definite
matrices: xTMx > 0 for all x ≤ 0 or equivalently, M = MT and all eigenvalues of M are
positive. Let

M =

[
A B
BT D

]
be symmetric positive definite, thus A, D and ∆ = D − BTA−1B are symmetric positive
definite. In this specific case we shall use the 2-norm, since all norms are equivalent in finite
dimensional spaces,

κ2(M) =
σmax(M)

σmin(M)
κ2(A) =

σmax(A)

σmin(A)

where σmax is the largest singular value and σmin is the smallest. Since M and A are sym-
metric positive definite, σmax(M) = λmax(M), σmin(M) = λmin(M), σmax(A) = λmax(A),
σmin(A) = λmin(A), where λmax is the largest eigenvalue and λmin is the smallest. By Cauchy
Interlace Theorem,
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Let Let A be a symmetric n x n matrix. The m m matrix B, where mleqn is called a
compression of A if there exists an orthogonal projection P onto a subspace of dimension m
such that P*AP = B.

Theorem 4.1. If the eigenvalues of A are α1 ≤ · · · ≤ αn, and those of B are β1 ≤ · · · ≤
βj ≤ · · · ≤ βm then for all j < m+ 1

αj ≤ βj ≤ αn−m+j

Thus,

κ2(A) =
σmax(A)

σmin(A)
=
λmax(A)

λmin(A)
≤ λmax(M)

λmin(M)
=
σmax(M)

σmin(M)
= κ2(M)

Then, if M is well conditioned then A is also well-conditioned, or equivalently A is ill
conditioned then M is ill-conditioned.

5 Large Example of Block Gaussian Elimination and

Conditioning

We will conclude with one overarching example of both block Gaussian elimination and
conditioning. Consider the matrix T

T =


1 2 0 −1 5 8
2 1 2 0 −1 5
0 2 1 2 0 −1
−1 0 2 1 2 0
5 −1 0 2 1 2
8 5 −1 0 2 1


where T is also symmetric, nonsingular and positive definite.
Before we start partitioning for block Gaussian elimination, we must first check the condition
number to see how well or ill-conditioned T actually is.∥∥T∥∥

1
= 15∥∥T∥∥

2
≈ 12.822∥∥T∥∥∞ = 15

Now we find the matrix norms of T−1,∥∥T−1∥∥
1
≈ .284∥∥T−1∥∥

2
≈ .784∥∥T−1∥∥∞ ≈ .284
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After computing the 1-norm, 2-norm and ∞-norm of T , we now compute the conditioning
number,

κ(T )1 =
∥∥T∥∥

1

∥∥T−1∥∥
1

= (15)(.284) = 4.26

κ(T )2 =
∥∥T∥∥

2

∥∥T−1∥∥
2

= (12.822)(.784) = 10.05

κ(T )∞ =
∥∥T∥∥∞ ∥∥T−1∥∥∞ = (15)(.284) = 4.26

since κ(A) is small relative to 1, we can say that T is well-conditioned.
To be safe, we check A to prove that A is also well-conditioned. We will use the 2-norm
method for A, ∥∥A∥∥ ≈ 3.828∥∥A−1∥∥ = 1

We now compute κ(A)2,

κ(A)2 =
δmax

δmin

=
λmax

λmin

≈ 3.828

This produces the inequality proved in Section 4.1 needed to say A is also well conditioned

κ(A)2 ≤ κ(M)2

3.828 ≤ 10.05

Let us now consider the system Tx = b. Using block Gaussian elimination we partition the
system such that

A =

1 2 0
2 1 2
0 2 1


B =

−1 5 8
0 −1 5
2 0 −1


C =

−1 0 2
5 −1 0
8 5 −1


D =

1 2 0
2 1 2
0 2 1


x̂ =

x1x2
x3

 x̆ =

x4x5
x6

 b̂ =

 1
1
−1

 b̆ =

 0
−3
1
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where

CA−1 =

−1 0 2
5 −1 0
8 5 −1

 3
7

2
7
−4

7
2
7
−1

7
2
7

−4
7

2
7

3
7

 =

−11
7

2
7

10
7

13
7

11
7
−22

7
38
7

9
7
−25

7


∆ = D − CA−1B =

1 2 0
2 1 2
0 2 1

−
−11

7
2
7

10
7

13
7

11
7
−22

7
38
7

9
7
−25

7

−1 5 8
0 −1 5
2 0 −1

 =

−24
7

71
7

88
7

71
7

−47
7
−167

7
88
7
−167

7
−367

7


knowing CA−1 and ∆, we can successfully decompose T ,

T =

[
A B
C D

]
=

[
I 0

CA−1 I

] [
A B
0 ∆

]
where [

A B
0 ∆

] [
x̂
x̆

]
=

[
b̂

b̆− CA−1b̂

]
Now to finally solve for x, let

c̆ = b̆− CA−1b̂ =

 0
−3
1

−
−11

7
2
7

10
7

13
7

11
7
−22

7
38
7

9
7
−25

7

 1
1
−1

 =

 19
7

−67
7

−65
7


then solving for x̆

x̆ = ∆−1c̆ =

−1520
7807

1623
7807

−1103
7807

1623
7807

152
7807

320
7807

−1103
7807

320
7807

− 559
7807

 19
7

−67
7

−65
7

 =

−9418
7807

− 21
7807

− 866
7807

 ≈
 −1.2063532727
−0.00268989368515
−0.110926091969


Finally knowing x̆, we can finally solve for x̂.

Ax̂ = b̂−Bx̆

x̂ = A−1(b̂−Bx̆)x̂ =

 3
7

2
7
−4

7
2
7
−1

7
2
7

−4
7

2
7

3
7

 [5422
7807

, 12116
7807

, 10163
7807

]
=

− 22
7807

2722
7807
4719
7807

 ≈
−0.00281798386064

0.348661457666
0.604457538107


Therefore

x =

[
x̂
x̆

]
=


−0.00281798386064

0.348661457666
0.604457538107
1.2063532727

−0.00268989368515
−0.110926091969


The beauty of block Gaussian elimination to solve Toeplitz systems of equations is that each
partition maintains Toeplitz structure. Each partition remains bisymmetric and nonsingular.
Block Gaussian elimination only requires O(n2) flops which is a relatively good speed for
an algorithm, but in modern day mathematics and computer science, the fascination with
these new aysmptotically fast algorithms may have the block Gaussian elimination become
less relevent.
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6 Conclusion

Toeplitz systems of equations are a very unique type of systems that can be ,at times,
difficult to solve. Mathematicians and Computer Scientists have been forging different ways
to effectively and quickly solve these systems. Like any matrix, Toeplitz matrices are severely
effected by conditioning, and how that effects a specifics algorithms overall stability. The
added benefit that Toeplitz matrices have are that in certain situations, the positive defintie
and Hermitian case, can nicely be decomposed, partitioned or factored.
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