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Basic Definitions

Definition

If A = a1, a2, . . . , aq, then A is a code alphabet of size q.

Definition

A q-ary word w = w1w2w3 . . .wn is a vector where wi ∈ A.

Definition

A q-ary block code is a set C over an alphabet A, where each
element, or codeword, is a q-ary word of length n.
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Basic Definitions

Definition

For two codewords, w1,w2, over the same alphabet, the
Hamming distance, denoted d(w1,w2), is the number of places
where the two vectors differ.

Definition

For a code C , the minimum distance is denoted
d(C ) = min{d(w1w2) : w1,w2 ∈ C ,w1 6= w2}.

Definition

For a codeword w, the Hamming weight of w, or wt(w), is the
number of nonzero places in w. That is, wt(w) = d(w, 0).
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Example

Notation: A q-ary (n,M, d)-code

Example

• A binary (3,4,2)-code

• A = F2 = {0, 1}
• C = {000, 011, 110, 101}

The main coding theory problem: optimizing one parameter
when others are given.
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Errors

• vector received is not a codeword

• x is sent, but y is received → e = x + y

• To detect e, x + e cannot be a codeword

Example

Binary (3,3,1)-code C = {001, 101, 110}

• e1 = 010 can be detected → for all x ∈ C , x + e1 6∈ C

• e2 = 100 cannot be detected → 001 + 100 = 101 ∈ C
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Error Detection

Definition

A code is u-error-detecting if when a codeword incurs
between one to u errors, the resulting word is not a codeword.

Theorem

A code is u-error-detecting if and only if d(C ) ≥ u + 1.

Proof.

(⇐) Any error pattern of weight at most u will alter a
codeword into a non-codeword.
(⇒) Suppose that for x, y ∈ C , d(x, y) ≤ u. Let e = x + y,
wt(e) ≤ u, and x + e = x + x + y = y, which is a codeword.
Therefore, e cannot be detected. (⇒)(⇐)



Coding
Theory:

Linear Error-
Correcting

Codes

Anna Dovzhik

Outline

Coding Theory

Basic Definitions

Error Detection
and Correction

Finite Fields

Linear Codes

Hamming Codes

Finite Fields
Revisited

BCH Codes

Reed-Solomon
Codes

Conclusion

Error Detection

Definition

A code is u-error-detecting if when a codeword incurs
between one to u errors, the resulting word is not a codeword.

Theorem

A code is u-error-detecting if and only if d(C ) ≥ u + 1.

Proof.

(⇐) Any error pattern of weight at most u will alter a
codeword into a non-codeword.
(⇒) Suppose that for x, y ∈ C , d(x, y) ≤ u. Let e = x + y,
wt(e) ≤ u, and x + e = x + x + y = y, which is a codeword.
Therefore, e cannot be detected. (⇒)(⇐)



Coding
Theory:

Linear Error-
Correcting

Codes

Anna Dovzhik

Outline

Coding Theory

Basic Definitions

Error Detection
and Correction

Finite Fields

Linear Codes

Hamming Codes

Finite Fields
Revisited

BCH Codes

Reed-Solomon
Codes

Conclusion

Error Detection

Definition

A code is u-error-detecting if when a codeword incurs
between one to u errors, the resulting word is not a codeword.

Theorem

A code is u-error-detecting if and only if d(C ) ≥ u + 1.

Proof.

(⇐) Any error pattern of weight at most u will alter a
codeword into a non-codeword.
(⇒) Suppose that for x, y ∈ C , d(x, y) ≤ u. Let e = x + y,
wt(e) ≤ u, and x + e = x + x + y = y, which is a codeword.
Therefore, e cannot be detected. (⇒)(⇐)



Coding
Theory:

Linear Error-
Correcting

Codes

Anna Dovzhik

Outline

Coding Theory

Basic Definitions

Error Detection
and Correction

Finite Fields

Linear Codes

Hamming Codes

Finite Fields
Revisited

BCH Codes

Reed-Solomon
Codes

Conclusion

Error Correction

• e + x is closer to x than any other codeword

• evaluate minimum distances

Definition

A code is v-error-correcting if v or fewer errors can be
corrected by decoding a transmitted word based on minimum
distance.

Theorem

A code is v -error-correcting if and only if d(C ) ≥ 2v + 1. That
is, if C has a distance d , it corrects d−1

2 errors.
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Finite Fields

Definition

A field is a nonempty set F of elements satisfying:

• operations addition and multiplication

• eight axioms
• closure under addition and multiplication
• commutativity of addition and multiplication
• associativity of addition and multiplication
• distributivity of multiplication over addition
• additive and multiplicative identities
• additive and multiplicative inverses

Binary field - arithmetic mod 2
+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1
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Finite Fields

Theorem

Zp is a field if and only if p is a prime.

Definition

Denote the multiplicative identity of a field F as 1. Then
characteristic of F is the least positive integer p such that 1
added to itself p times is equal to 0. This characteristic must
be either 0 or a prime number.

Theorem

A finite field F of characteristic p contains pn elements for
some integer n ≥ 1.
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Linear Codes

• A linear (n, k, d)-code C over a finite field Fq is a
subspace of the vector space Fn

q

• Codewords are linear combinations (qk distinct codewords)

Definition

A matrix whose rows are the basis vectors of a linear code is a
generator matrix.

Definition

Two q-ary codes are equivalent if one can be obtained from the
other using a combination of the operations

• permutation of the positions of the code (column swap)

• multiplication of the symbols appearing in a fixed position
(row operation)
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Linear Codes

Definition

If C is a linear code in Fn
q, then the dual code of C is C⊥.

Definition

A parity-check matrix is a generator matrix for the dual code.

• C is a (n, k, d)-code → generator matrix G is k × n and
parity-check matrix H is (n − k)× n.

• The standard form of G is (Ik |A) and the standard form of
H is (B|In−k).
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Theorems

Theorem

If C is a (n, k)-code over Fp, then v is a codeword of C if and
only if it is orthogonal to every row of the parity-check matrix
H, or equivalently, vHT = 0.
This also means that G is a generator matrix for C if and only
if the rows of G are linearly independent and GHT = O.

Proof: orthogonality
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Theorems

Theorem

If G = (Ik |A) is the standard form of the generator matrix for a
(n, k , d)-code C , then a parity-check matrix for C is
H = (−AT |In−k).

Note that if the code is binary, negation is unnecessary



Coding
Theory:

Linear Error-
Correcting

Codes

Anna Dovzhik

Outline

Coding Theory

Basic Definitions

Error Detection
and Correction

Finite Fields

Linear Codes

Hamming Codes

Finite Fields
Revisited

BCH Codes

Reed-Solomon
Codes

Conclusion

Theorems

Theorem

For a linear code C and a parity-check matrix H,

• C has distance ≥ d if and only if any d − 1 columns of H
are linearly independent

• C has distance ≤ d if and only if H has d columns that
are linearly dependent.

So, when C has distance d , any d − 1 columns of H are linearly
independent and H has d columns that are linearly dependent.
Proof: orthogonality
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Bounds

Recall the main coding theory problem

Definition

A q-ary code is a perfect code if it attains the Hamming, or
sphere-packing bound. For q > 1 and 1 ≤ d ≤ n, this is
defined as having

qn∑[(d−1)/2]
i=0

(n
i

)
(q − 1)i

codewords.
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Bounds

Theorem

When q is a prime power, the parameters (n, k , d) of a linear
code over Fq satisfy k + d ≤ n + 1. This upper bound is known
as the Singleton bound.

Definition

A (n, k , d) code where k + d = n + 1 is a maximum distance
separable code (MDS) code.

Theorem

If a linear code C over Fq with parameters (n, k , d) is MDS,
then:
C⊥ is MDS, every set of n − k columns of H is linearly
independent, every set of k columns of G is linearly
independent.
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Hamming Codes

• single error-correcting

• double error-detecting codes

• easy to encode and decode

Definition

The binary Hamming code, denoted Ham(r , 2), has a
parity-check matrix H whose columns consist of all nonzero
binary codewords of length r

For a non-binary finite field Fq, the q-ary Hamming code is
denoted as Ham(r , q)
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Properties

Properties for both Ham(r , 2) and Ham(r , q):

• perfect code

• k = 2r − 1− r , where k denotes dimension

• more generally, k = qr−1
q−1

• d = 3, where d denotes distance

• exactly single-error-correcting



Coding
Theory:

Linear Error-
Correcting

Codes

Anna Dovzhik

Outline

Coding Theory

Basic Definitions

Error Detection
and Correction

Finite Fields

Linear Codes

Hamming Codes

Finite Fields
Revisited

BCH Codes

Reed-Solomon
Codes

Conclusion

Decoding Hamming

Ham(3, 2) code
Constructing the parity-check matrix

• all binary Hamming codes of a given length are equivalent

• arrange the columns of H in order of increasing binary
numbers

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
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Decoding Hamming

Ham(3, 2) code
Suppose y = (1101011) is received

yHT = (1101011)



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


= (110)

• error is in the sixth position of y

• y is corrected to (1101001)
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Encoding Hamming

To derive G , recall that if H = (−AT |In−k), G = (Ik |A)

To encode x = 1101:

xG = (1101)


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 = (1101001)

• encoded vector is n + k digits long

• first k digits (message digits) are the original vector

• last n − k digits (check digits) represent redundancy
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Finite Fields Revisited

Definition

For n polynomials in Fq[x ], denoted f (x1), f2(x), . . . , fn(x), the
least common multiple, denoted lcm(f (x1), f2(x), . . . , fn(x)) is
the lowest degree monic polynomial that is a multiple of all the
polynomials.

Definition

A minimal polynomial of an element in a finite field Fp is a
nonzero monic polynomial of the least degree possible such
that the element is a root.

Definition

A primitive element or generator of Fp is an α such that
Fq = {0, α, α2, . . . , αp−1} Every finite field has at least one
primitive element, and primitive elements are not unique.
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BCH Codes

• Generalization of Hamming codes for multiple-error
correction

• Eliminate certain codewords from Hamming code

• Can be determined from a generator polynomial

Definition

Suppose α is a primitive element of a finite field Fm
q and M i (x)

is the minimal polynomial of αi with respect to Fq. Then a
primitive BCH code over Fq of length n = qm − 1 and distance
d is a q-ary cyclic code that is generated by the polynomial
defined as lcm(Ma(x),Ma+1(x), . . . ,Ma+d−2(x)) for some a.
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Codewords and Polynomials

• One way to represent a codeword c is with a binary
polynomial c(x), where α is a primitive element and
c(αk) = 0.

• Given a codeword c of length n, let the digits of c be
denoted c = cn−1, . . . , c1, c0, and define the polynomial
c(x) as

c(x) =
n−1∑
i=0

cix
i

Example

The BCH code of length 15, 00001 11011 00101,
corresponds to the polynomial x10 + x9 + x8 + x6 + x5 + x2 + 1
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Reed-Solomon Codes

• Subclass of BCH codes that can handle error-bursts

• MDS codes

Definition

A q-ary Reed-Solomon code is a q-ary BCH code of length
q − 1 that is generated by
g(x) = (x − αa+1)(x − αa+2) . . . (x − αa+d−1), where
a ≥ 0, 2 ≤ d ≤ q − 1, and α is a primitive element of Fq.

Since the length of a binary RS code would be 2− 1 = 1, this
type of code is never considered.
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Reed-Solomon Codes

Example

For a 7-ary RS code of length 6 and generator polynomial
g(x) = (x − 3)(x − 32)(x − 33) = 6 + x + 3x2 + x3,

G =

6 1 3 1 0 0
0 6 1 3 1 0
0 0 6 1 3 1



H =

1 4 1 1 0 0
0 1 4 1 1 0
0 0 1 4 1 1
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Applications

Any case where data is transmitted through a channel that is
susceptible to noise

• digital images from deep-space

• compact disc encoding

• radio communications
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