Markov Chains, Stochastic Processes, and Matrix Decompositions

Jack Gilbert

5 May 2014

Outline

(1) Markov Chains

- Probability Spaces, Random Variables and Expected Values
- Markov Chains and Transition Matrices
- The Chapman-Kologorov Equation
- State Spaces
- Recurrence and Irreducible Markov Chains

Outline

(1) Markov Chains

- Probability Spaces, Random Variables and Expected Values
- Markov Chains and Transition Matrices
- The Chapman-Kologorov Equation
- State Spaces
- Recurrence and Irreducible Markov Chains
(2) Markov Chains and Linear Algebra
- Introduction
- Perron-Frobenius
- Matrix Decompositions and Markov Chains
- Spectral Representations

Outline

(1) Markov Chains

- Probability Spaces, Random Variables and Expected Values
- Markov Chains and Transition Matrices
- The Chapman-Kologorov Equation
- State Spaces
- Recurrence and Irreducible Markov Chains
(2) Markov Chains and Linear Algebra
- Introduction
- Perron-Frobenius
- Matrix Decompositions and Markov Chains
- Spectral Representations
(3) Sources

Probability Spaces

Definition

A probability space consists of three parts:

- A sample space Ω which is the set of all possible outcomes.
- A set of events F where each event is a set containing zero or more outcomes.
- A probability measure P which assigns events probabilities.

Definition

The sample space Ω of an experiment is the set of all possible outcomes of that experiment.

More Probability Spaces

Definition

An event is a subset of a sample space. An event A is said to occur if and only if the observed outcome $\omega \in A$.

Definition

If Ω is a sample space and if P is a function which associates a number for each event in Ω, then P is called the probability measure provided that:

- For any event $A, 0 \leq P(A) \leq 1$
- $P(\Omega)=1$
- For any sequence A_{1}, A_{2}, \ldots of disjoint events,

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Random Variables

We will focus our attention on random variables, a key component of stochastic processes.

Definition

A random variable X with values in the set E is a function which assigns a value $X(\omega) \in E$ to each outcome $\omega \in \Omega$.

When E is finite, X is said to be a discrete random variable.

Definition

The discrete random variables X_{1}, \ldots, X_{n} are said to be independent if
$P\left\{X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right\}=P\left\{X_{1}=a_{1}\right\} \cdots P\left\{X_{n}=a_{n}\right\}$ for every $a_{1}, \ldots, a_{n} \in E$.

Markov Chains

With these basic definitions in hand, we can begin our exploration of Markov chains.

Definition

The stochastic process $X=\left\{X_{n} ; n \in \mathbb{N}\right\}$ is called a Markov chain if $P\left\{X_{n+1}=j \mid X_{0}, \ldots, X_{n}\right\}=P\left\{X_{n+1}=j \mid X_{n}\right\}$ for every $j \in E, n \in \mathbb{N}$.

So a Markov chain is a sequence of random variables such that for any n, X_{n+1} is conditionally independent of X_{0}, \ldots, X_{n-1} given X_{n}.

Properties of Markov Chains

Definition

The probabilities $P(i, j)$ are called the transition probabilities for the Markov chain X.

We can arrange the $P(i, j)$ into a square matrix, which will be critical to our understanding of stochastic matrices.

Definition

Let P be a square matrix with entries $P(i, j)$ where $i, j \in E . P$ is called a transition matrix over E if

- For every $i, j \in E, P(i, j) \geq 0$
- For every $i \in E, \sum_{j \in E} P(i, j)=1$.

Markov Notation

In general, the basic notation for Markov chains follows certain rules:

- $M(i, j)$ refers to the entry in row i, column j of matrix M.
- Column vectors are represented by lowercase letters, i.e. $f(i)$ refers to the i-th entry of column f.
- Row vectors are represented by Greek letters, i.e. $\pi(j)$ refers to the j-th entry of row π.

Example

The transition matrix for the set $E=\{1,2, \ldots\}$ is

$$
P=\left[\begin{array}{cccc}
P(0,0) & P(0,1) & P(0,2) & \cdots \\
P(1,0) & P(1,1) & P(1,2) & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Transition Probabilities

Theorem

For every $n, m \in \mathbb{N}$ with $m \geq 1$ and $i_{0}, \ldots, i_{m} \in E$,

$$
\begin{aligned}
& P\left\{X_{n+i}=i_{1}, \ldots, X_{n+m}=i_{m} \mid X_{n}=i_{0}\right\} \\
& \quad=P\left(i_{0}, i_{1}\right) P\left(i_{1}, i_{2}\right) \cdots P\left(i_{m-1}, i_{m}\right) .
\end{aligned}
$$

Corollary

Let π be a probability distribution on E. Suppose $P\left\{X_{k}=i_{k}\right\}=\pi\left(i_{k}\right)$ for every $i_{k} \in E$. Then for every $m \in \mathbb{N}$ and $i_{0}, \ldots, i_{m} \in E$,

$$
\begin{aligned}
& P\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{m}=i_{m}\right\} \\
& \quad=\pi\left(i_{0}\right) P\left(i_{0}, i_{1}\right) \cdots P\left(i_{m-1}, i_{m}\right) .
\end{aligned}
$$

The Chapman-Kolmogorov Equation

Lemma

For any $m \in \mathbb{N}$,

$$
P\left\{X_{n+m}=j \mid X_{n}=i\right\}=P^{m}(i, j) \text { for every } i, j \in E \text { and } n \in \mathbb{N} .
$$

In other words, the probability that the chain moves from state i to that j in m steps is the (i, j) th entry of the n-th power of the transition matrix P. Thus for any $m, n \in \mathbb{N}$,

$$
P^{m+n}=P^{m} P^{n}
$$

which in turn becomes

$$
P^{m+n}(i, j)=\sum_{k \in E} P^{m}(i, k) P^{n}(k, j) ; i, j \in E .
$$

This is called the Chapman-Kolmogorov equation.

The Chapman-Kolmogorov Equation

Example

Let $X=\left\{X_{n} ; n \in \mathbb{N}\right\}$ be a Markov chain with state space $E=\{a, b, c\}$ and transition matrix

$$
P=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
\frac{2}{3} & 0 & \frac{1}{3} \\
\frac{3}{5} & \frac{2}{5} & 0
\end{array}\right]
$$

Then

$$
\begin{aligned}
P\left\{X_{1}=b, X_{2}=\right. & \left.c, X_{3}=a, X_{4}=c, X_{5}=a, X_{6}=c, X_{7}=b \mid X_{0}=c\right\} \\
& =P(c, b) P(b, c) P(c, a) P(a, c) P(c, a) P(a, c) P(c, b)
\end{aligned}
$$

The Chapman-Kolmogorov Equation

Example (Continued)

$$
\begin{array}{r}
=\frac{2}{5} \cdot \frac{1}{3} \cdot \frac{3}{5} \cdot \frac{1}{4} \cdot \frac{3}{5} \cdot \frac{1}{4} \cdot \frac{2}{5} \\
=\frac{3}{2500} .
\end{array}
$$

The two-step transition probabilities are given by

$$
P^{2}=\left[\begin{array}{ccc}
\frac{17}{30} & \frac{9}{40} & \frac{5}{24} \\
\frac{8}{15} & \frac{3}{10} & \frac{1}{6} \\
\frac{17}{30} & \frac{3}{20} & \frac{17}{60}
\end{array}\right]
$$

where in this case $P\left\{X_{n+2}=c \mid X_{n}=b\right\}=P^{2}(b, c)=\frac{1}{6}$.

State Spaces

Definition

Given a Markov chain X, a state space E, and a transition matrix P, let T be the time of the first visit to state j and let N_{j} be the total visits to state j. Then

- State j is recurrent if $P_{j}\{T<\infty\}=1$. Otherwise, j is transient if $P_{j}\{T=+\infty\}>0$.
- A recurrent state j is null if $E_{j}\{T\}=\infty$; otherwise j is non-null.
- A recurrent state j is periodic with period δ if $\delta \geq 2$ is the largest integer for $P_{j}\{T=n \delta$ for some $n \geq 1\}=1$.
- A set of states is closed if no state outside the set can be reached from within the set.

Probability Spaces, Random Variables and Expected Values

State Spaces

Definition (Continued)

- A state forming a closed set by itself is called an absorbing state.
- A closed set is irreducible if no proper subset of it is closed.
- Thus a Markov chain is irreducible if its only closed set is the set of all states.

State Spaces

Example

Consider the Markov chain with state space $E=\{a, b, c, d, e\}$ and transition matrix

$$
P=\left[\begin{array}{ccccc}
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 \\
0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} \\
\frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3}
\end{array}\right]
$$

The closed sets are $\{a, b, c, d, e\}$ and $\{a, c, e\}$. Since there exist two closed sets, the chain is not irreducible.

State Spaces

Example (Continued)

By deleting the second and fourth rows and column we end up with the matrix

$$
Q=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]
$$

which is the Markov matrix corresponding to the restriction of X to the closed set $\{a, c, e\}$. We can rearrange P for easier analysis as such:

$$
P^{*}=\left[\begin{array}{ccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{2}{3} & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} & \frac{3}{4} \\
\frac{1}{4} & 0 & 0 & \frac{1}{2} & \frac{1}{4}
\end{array}\right]
$$

Recurrence and Irreducibility

Theorem

From a recurrent state, only recurrent states can be reached.
So no recurrent state can reach a transient state and the set of all recurrent states is closed.

Lemma

For each recurrent state j there exists an irreducible closed set C which includes j.

Proof.

Let j be a recurrent state and let C be the set of all states which can be reached from j. Then C is a closed set. If $i \in C$ then $j \rightarrow i$. Since j is recurrent, our previous lemma implies that $i \rightarrow j$. There must be some state k such that $j \rightarrow k$, and thus $i \rightarrow k$.

Recurrence and Irreducibility

Theorem

In a Markov chain, the recurrent states can be divided uniquely into irreducible closed sets C_{1}, C_{2}, \ldots

Using this theorem we can arrange our transition matrix in the following form

$$
P=\left[\begin{array}{ccccc}
P_{1} & 0 & 0 & \cdots & 0 \\
0 & P_{2} & 0 & \cdots & 0 \\
0 & 0 & P_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Q_{1} & Q_{2} & Q_{3} & \cdots & Q
\end{array}\right]
$$

where P_{1}, P_{2}, \ldots are the Markov matrices corresponding to sets C_{1}, C_{2}, \ldots of states and each C_{i} is an irreducible Markov chain.

Recurrence and Irreducibility

The following tie these ideas together.

Theorem

Let X be an irreducible Markov chain. Then either all states are transient, or all are recurrent null, or all are recurrent non-null. Either all states are aperiodic, or else all are periodic with the same period δ.

Corollary

Let C be an irreducible closed set with finitely many states. Then no state in C is recurrent null.

Corollary

If C is an irreducible closed set with finitely many states, then C has no transient states.

Markov Chains and Linear Algebra

This theorem gives some of the flavor of working with Markov chains in a linear algebra setting.

Theorem

Let X be an irreducible Markov chain. Consider the system of linear equations

$$
\vec{v}(j)=\sum_{i \in E} \vec{v}(i) P(i, j), j \in E
$$

Then all states are recurrent non-null if and only if there exists a solution \vec{v} with $\sum_{j \in E} \vec{v}(j)=1$.

If there is a solution \vec{v} then $\vec{v}(j)>0$ for every $j \in E$, and \vec{v} is unique.

The Perron-Frobenius Theorems

Theorem (Perron-Frobenius Part 1)

Let A be a square matrix of size n with non-negative entries. Then

- A has a positive eigenvalue λ_{0} with left eigenvector \vec{x}_{0} such that $\overrightarrow{x_{0}}$ is non-negative and non-zero.
- If λ is any other eigenvalue of $A,|\lambda| \leq \lambda_{0}$.
- If λ is an eigenvalue of A and $|\lambda|=\lambda_{0}$, then $\mu=\frac{\lambda}{\lambda_{0}}$ is a root of unity and $\mu^{k} \lambda_{0}$ is an eigenvalue of A for $k=0,1,2, \ldots$

The Perron-Frobenius Theorems

Theorem (Perron-Frobenius Part 2)

Let A be a square matrix of size n with non-negative entries such that A^{m} has all positive entries for some m. Then

- A has a positive eigenvalue λ_{0} with a corresponding left eigenvector $\overrightarrow{x_{0}}$ where the entries of $\overrightarrow{x_{0}}$ are positive.
- If λ is any other eigenvalue of $A,|\lambda|<\lambda_{0}$.
- λ_{0} has multiplicity 1.

The Perron-Frobenius Theorems

Corollary

Let P be an irreducible Markov matrix. Then 1 is a simple eigenvalue of P. For any other eigenvalue λ of P we have $|\lambda| \leq 1$. If P is aperiodic then $|\lambda|<1$ for all other eigenvalues of P. If P is periodic with period δ then there are δ eigenvalues with an absolute value equal to 1 . These are all distinct and are

$$
\lambda_{1}=1, \lambda_{2}=c, \ldots, \lambda_{\delta}=c^{\delta-1} ; c=e^{2 \pi i / \delta} .
$$

A Perron-Frobenius Example

Example

$$
P=\left[\begin{array}{ccccc}
0 & 0 & 0.2 & 0.3 & 0.5 \\
0 & 0 & 0.5 & 0.5 & 0 \\
0.4 & 0.6 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0.2 & 0.8 & 0 & 0 & 0
\end{array}\right]
$$

P is irreducible and periodic with period $\delta=2$. Then

$$
P^{2}=\left[\begin{array}{ccccc}
0.48 & 0.52 & 0 & 0 & 0 \\
0.70 & 0.30 & 0 & 0 & 0 \\
0 & 0 & 0.38 & 0.42 & 0.20 \\
0 & 0 & 0.20 & 0.30 & 0.50 \\
0 & 0 & 0.44 & 0.46 & 0.10
\end{array}\right]
$$

A Perron-Frobenius Example

Example (Continued)

The eigenvalues of the 2 by 2 matrix in the top-left corner of P^{2} are 1 and -0.22 . Since $1,-0.22$ are eigenvalues of P, their square roots will be eigenvalues for $P: 1,-1, i \sqrt{0.22},-i \sqrt{0.22}$. The final eigenvalue must go into itself by a rotation of 180 degrees and thus must be 0 .

An Implicit Theorem

Theorem

All finite stochastic matrices P have 1 as an eigenvalue and there exist non-negative eigenvectors corresponding to $\lambda=1$.

Proof.

Since each row of P sums to $1, \vec{y}$ is a right eigenvector. Since all finite chains have at least one positive persistent state, we know there exists a closed irreducible subset S and the Markov chain associated with S is irreducible positive persistent. We know for S there exists an invariant probability vector. Assume P is a square matrix of size n and rewrite P in block form with

$$
P^{*}=\left[\begin{array}{ll}
P_{1} & 0 \\
R & Q
\end{array}\right]
$$

An Implicit Theorem

Proof (Continued).

P_{1} is the probability transition matrix corresponding to S. Let $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$ be the invariant probability vector for P_{1}.
Define $\vec{\gamma}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}, 0,0, \ldots, 0\right)$ and note $\vec{\gamma} P=\vec{\gamma}$. Hence $\vec{\gamma}$ is a left eigenvector for P corresponding to $\lambda=1$. Additionally,

$$
\sum_{i=1}^{n} \gamma_{i}=1
$$

This shows that $\lambda=1$ is the largest possible eigenvalue for a finite stochastic matrix P.

Another Theorem

Theorem

If P is the transition matrix for a finite Markov chain, then the multiplicity of the eigenvalue 1 is equal to the number of irreducible subsets of the chain.

Proof (First Half).

Arrange P based on the irreducible subsets of the chain C_{1}, C_{2}, \ldots

$$
P=\left[\begin{array}{ccccc}
P_{1} & 0 & \cdots & 0 & 0 \\
0 & P_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & P_{m} & \vdots \\
R_{1} & R_{2} & \cdots & R_{m} & Q
\end{array}\right]
$$

Another Theorem

Proof (First Half Continued).

Each P_{k} corresponds to a subset C_{k} for an irreducible positive persistent chain. The ${\overrightarrow{X_{i}}}^{s}$ for each C_{i} are linearly independent; thus the multiplicity for $\lambda=1$ is at least equal to the number of subsets C.

An Infinite Decomposition

Theorem

Let $\left\{X_{t} ; t=0,1,2, \ldots\right\}$ be a Markov chain with state $\{0,1,2, \ldots\}$ and a transition matrix P. Let P be irreducible and consist of persistent positive recurrent states. Then $I-P=(A-I)(B-S)$ where

- A is strictly upper triangular with $a_{i j}=$
$E_{i}\left\{\right.$ number of times $X=j$ before X reaches $\left.\Delta_{j-i}\right\}, i<j$.
- B is strictly lower triangular with $b_{i j}=P_{i}\left\{X^{i}=j\right\}, i>j$.
- S is diagonal where $s_{j}=\sum_{j=0}^{i-1} b_{i j}\left(\right.$ and $\left.s_{0}=0\right)$. Moreover, $a_{i j}<\infty$ and $i<j$.

Spectral Representations

Suppose we have a diagonalizable matrix A. Define B_{k} to be the matrix obtained by multiplying the column vector f_{k} with the row vector π_{k} where f_{k}, π_{k} are from A. Explicitly,

$$
B_{k}=f_{k} \pi_{k}
$$

Then we can represent A in the following manner:

$$
A=\lambda_{1} B_{1}+\lambda_{2} B_{2}+\cdots+\lambda_{n} B_{n}
$$

This is the spectral representation of A, and it holds some key properties relevant to our discussion of Markov chains. For example, for the k-th power of A we have

$$
A^{k}=\lambda_{1}^{k} B_{1}+\cdots+\lambda_{n}^{k} B_{n}
$$

A Final Example

Example

Let

$$
P=\left[\begin{array}{ll}
0.8 & 0.2 \\
0.3 & 0.7
\end{array}\right]
$$

$\lambda_{1}=1 ; \lambda_{2}=.5$. We can now calculate B_{1} :

$$
B_{1}=f_{1} \pi_{1}=\left[\begin{array}{ll}
0.6 & 0.4 \\
0.6 & 0.4
\end{array}\right]
$$

Since $P^{0}=I=B_{1}+B_{2}$ for $k=0$,

$$
B_{2}=\left[\begin{array}{cc}
0.4 & -0.4 \\
-0.6 & 0.6
\end{array}\right]
$$

A Final Example

Example (Continued)

Thus the spectral representation for P^{k} is

$$
P^{k}=\left[\begin{array}{ll}
0.6 & 0.4 \\
0.6 & 0.4
\end{array}\right]+(0.5)^{k}\left[\begin{array}{cc}
0.4 & -0.4 \\
-0.6 & 0.6
\end{array}\right], k=0,1, \ldots
$$

The limit as $k \rightarrow \infty$ has $(0.5)^{k}$ approach zero, so

$$
P^{\infty}=\lim _{k} P^{k}=\left[\begin{array}{ll}
0.6 & 0.4 \\
0.6 & 0.4
\end{array}\right]
$$

Sources

\square R. Beezer.

A Second Course In Linear Algebra.
Open-License, 2014.
E. Cinlar.

Introduction to Stochastic Processes.
Pretence-Hall, 1975.
囯 D. Heyman.
A Decomposition Theorem for Infinite Stochastic Matrices.
J. Appl. Prob. 32, 1995.
D. Isaacson.

Markov Chains: Theory and Applications.
John Wiley and Sons, 1976.

