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Probability Spaces

Definition

A probability space consists of three parts:

A sample space Ω which is the set of all possible outcomes.

A set of events F where each event is a set containing zero or
more outcomes.

A probability measure P which assigns events probabilities.

Definition

The sample space Ω of an experiment is the set of all possible
outcomes of that experiment.
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More Probability Spaces

Definition

An event is a subset of a sample space. An event A is said to
occur if and only if the observed outcome ω ∈ A.

Definition

If Ω is a sample space and if P is a function which associates a
number for each event in Ω, then P is called the probability
measure provided that:

For any event A, 0 ≤ P(A) ≤ 1

P(Ω) = 1

For any sequence A1,A2, . . . of disjoint events,

P(
⋃∞

i=1 Ai ) =
∞∑
i=1

P(Ai ).
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Random Variables

We will focus our attention on random variables, a key component
of stochastic processes.

Definition

A random variable X with values in the set E is a function which
assigns a value X (ω) ∈ E to each outcome ω ∈ Ω.

When E is finite, X is said to be a discrete random variable.

Definition

The discrete random variables X1, . . . ,Xn are said to be
independent if
P{X1 = a1, . . . ,Xn = an} = P{X1 = a1} · · ·P{Xn = an} for every
a1, . . . , an ∈ E .
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Markov Chains

With these basic definitions in hand, we can begin our exploration
of Markov chains.

Definition

The stochastic process X = {Xn; n ∈ N} is called a Markov chain
if P{Xn+1 = j | X0, . . . ,Xn} = P{Xn+1 = j | Xn} for every
j ∈ E , n ∈ N.

So a Markov chain is a sequence of random variables such that for
any n, Xn+1 is conditionally independent of X0,. . . , Xn−1 given Xn.
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Properties of Markov Chains

Definition

The probabilities P(i , j) are called the transition probabilities for
the Markov chain X .

We can arrange the P(i , j) into a square matrix, which will be
critical to our understanding of stochastic matrices.

Definition

Let P be a square matrix with entries P(i , j) where i , j ∈ E . P is
called a transition matrix over E if

For every i , j ∈ E ,P(i , j) ≥ 0

For every i ∈ E ,
∑
j∈E

P(i , j) = 1.
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Markov Notation

In general, the basic notation for Markov chains follows certain
rules:

M(i , j) refers to the entry in row i , column j of matrix M.
Column vectors are represented by lowercase letters, i.e. f (i)
refers to the i-th entry of column f .
Row vectors are represented by Greek letters, i.e. π(j) refers
to the j-th entry of row π.

Example

The transition matrix for the set E = {1, 2, . . . } is

P =

P(0, 0) P(0, 1) P(0, 2) · · ·
P(1, 0) P(1, 1) P(1, 2) · · ·

...
...

...
. . .


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Transition Probabilities

Theorem

For every n, m ∈ N with m ≥ 1 and i0, . . . , im ∈ E ,

P{Xn+i = i1, . . . ,Xn+m = im | Xn = i0}
= P(i0, i1)P(i1, i2) · · ·P(im−1, im).

Corollary

Let π be a probability distribution on E . Suppose
P{Xk = ik} = π(ik) for every ik ∈ E . Then for every m ∈ N and
i0, . . . , im ∈ E ,

P{X0 = i0,X1 = i1, . . . ,Xm = im}
= π(i0)P(i0, i1) · · ·P(im−1, im).

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions



Markov Chains
Markov Chains and Linear Algebra

Sources

Probability Spaces, Random Variables and Expected Values
Markov Chains and Transition Matrices
The Chapman-Kologorov Equation
State Spaces
Recurrence and Irreducible Markov Chains

The Chapman-Kolmogorov Equation

Lemma

For any m ∈ N,

P{Xn+m = j | Xn = i} = Pm(i , j) for every i , j ∈ E and n ∈ N.

In other words, the probability that the chain moves from state i to
that j in m steps is the (i , j)th entry of the n-th power of the
transition matrix P. Thus for any m, n ∈ N,

Pm+n = PmPn

which in turn becomes

Pm+n(i , j) =
∑
k∈E

Pm(i , k)Pn(k , j); i , j ∈ E .

This is called the Chapman-Kolmogorov equation.
Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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The Chapman-Kolmogorov Equation

Example

Let X = {Xn; n ∈ N} be a Markov chain with state space
E = {a, b, c} and transition matrix

P =

1
2

1
4

1
4

2
3 0 1

3
3
5

2
5 0


Then

P{X1 = b,X2 = c ,X3 = a,X4 = c ,X5 = a,X6 = c,X7 = b | X0 = c}
= P(c , b)P(b, c)P(c , a)P(a, c)P(c , a)P(a, c)P(c , b)
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The Chapman-Kolmogorov Equation

Example (Continued)

=
2

5
· 1

3
· 3

5
· 1

4
· 3

5
· 1

4
· 2

5

=
3

2500
.

The two-step transition probabilities are given by

P2 =

17
30

9
40

5
24

8
15

3
10

1
6

17
30

3
20

17
60


where in this case P{Xn+2 = c | Xn = b} = P2(b, c) = 1

6 .
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State Spaces

Definition

Given a Markov chain X , a state space E , and a transition matrix
P, let T be the time of the first visit to state j and let Nj be the
total visits to state j . Then

State j is recurrent if Pj{T <∞} = 1. Otherwise, j is
transient if Pj{T = +∞} > 0.

A recurrent state j is null if Ej{T} =∞; otherwise j is
non-null.

A recurrent state j is periodic with period δ if δ ≥ 2 is the
largest integer for Pj{T = nδ for some n ≥ 1} = 1.

A set of states is closed if no state outside the set can be
reached from within the set.

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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State Spaces

Definition (Continued)

A state forming a closed set by itself is called an absorbing
state.

A closed set is irreducible if no proper subset of it is closed.

Thus a Markov chain is irreducible if its only closed set is the
set of all states.
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State Spaces

Example

Consider the Markov chain with state space E = {a, b, c , d , e} and
transition matrix

P =


1
2 0 1

2 0 0
0 1

4 0 3
4 0

0 0 1
3 0 2

3
1
4

1
2 0 1

4 0
1
3 0 1

3 0 1
3


The closed sets are {a, b, c , d , e} and {a, c , e}. Since there exist
two closed sets, the chain is not irreducible.
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State Spaces

Example (Continued)

By deleting the second and fourth rows and column we end up
with the matrix

Q =

1
2

1
2 0

0 1
3

2
3

1
3

1
3

1
3


which is the Markov matrix corresponding to the restriction of X
to the closed set {a, c , e}. We can rearrange P for easier analysis
as such:

P∗ =


1
2

1
2 0 0 0

0 1
3

2
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
4

3
4

1
4 0 0 1

2
1
4


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Recurrence and Irreducibility

Theorem

From a recurrent state, only recurrent states can be reached.

So no recurrent state can reach a transient state and the set of all
recurrent states is closed.

Lemma

For each recurrent state j there exists an irreducible closed set C
which includes j.

Proof.

Let j be a recurrent state and let C be the set of all states which
can be reached from j . Then C is a closed set. If i ∈ C then
j → i . Since j is recurrent, our previous lemma implies that i → j .
There must be some state k such that j → k, and thus i → k.
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Recurrence and Irreducibility

Theorem

In a Markov chain, the recurrent states can be divided uniquely
into irreducible closed sets C1,C2, . . .

Using this theorem we can arrange our transition matrix in the
following form

P =


P1 0 0 · · · 0
0 P2 0 · · · 0
0 0 P3 · · · 0
...

...
...

. . .
...

Q1 Q2 Q3 · · · Q


where P1,P2, . . . are the Markov matrices corresponding to sets
C1,C2, . . . of states and each Ci is an irreducible Markov chain.
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Recurrence and Irreducibility

The following tie these ideas together.

Theorem

Let X be an irreducible Markov chain. Then either all states are
transient, or all are recurrent null, or all are recurrent non-null.
Either all states are aperiodic, or else all are periodic with the same
period δ.

Corollary

Let C be an irreducible closed set with finitely many states. Then
no state in C is recurrent null.

Corollary

If C is an irreducible closed set with finitely many states, then C
has no transient states.
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Markov Chains and Linear Algebra

This theorem gives some of the flavor of working with Markov
chains in a linear algebra setting.

Theorem

Let X be an irreducible Markov chain. Consider the system of
linear equations

#»v (j) =
∑
i∈E

#»v (i)P(i , j), j ∈ E .

Then all states are recurrent non-null if and only if there exists a

solution #»v with
∑
j∈E

#»v (j) = 1.

If there is a solution #»v then #»v (j) > 0 for every j ∈ E , and #»v is
unique.

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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The Perron-Frobenius Theorems

Theorem (Perron-Frobenius Part 1)

Let A be a square matrix of size n with non-negative entries. Then

A has a positive eigenvalue λ0 with left eigenvector #»x0 such
that #»x0 is non-negative and non-zero.

If λ is any other eigenvalue of A, | λ |≤ λ0.

If λ is an eigenvalue of A and | λ |= λ0, then µ = λ
λ0

is a root

of unity and µkλ0 is an eigenvalue of A for k = 0, 1, 2, . . .

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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The Perron-Frobenius Theorems

Theorem (Perron-Frobenius Part 2)

Let A be a square matrix of size n with non-negative entries such
that Am has all positive entries for some m. Then

A has a positive eigenvalue λ0 with a corresponding left
eigenvector #»x0 where the entries of #»x0 are positive.

If λ is any other eigenvalue of A, | λ |< λ0.

λ0 has multiplicity 1.

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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The Perron-Frobenius Theorems

Corollary

Let P be an irreducible Markov matrix. Then 1 is a simple
eigenvalue of P. For any other eigenvalue λ of P we have | λ |≤ 1.
If P is aperiodic then | λ |< 1 for all other eigenvalues of P. If P is
periodic with period δ then there are δ eigenvalues with an
absolute value equal to 1. These are all distinct and are

λ1 = 1, λ2 = c , . . . , λδ = cδ−1; c = e2πi/δ.

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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A Perron-Frobenius Example

Example

P =


0 0 0.2 0.3 0.5
0 0 0.5 0.5 0

0.4 0.6 0 0 0
1 0 0 0 0

0.2 0.8 0 0 0


P is irreducible and periodic with period δ = 2. Then

P2 =


0.48 0.52 0 0 0
0.70 0.30 0 0 0

0 0 0.38 0.42 0.20
0 0 0.20 0.30 0.50
0 0 0.44 0.46 0.10


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A Perron-Frobenius Example

Example (Continued)

The eigenvalues of the 2 by 2 matrix in the top-left corner of P2

are 1 and -0.22. Since 1,−0.22 are eigenvalues of P, their square
roots will be eigenvalues for P : 1,−1, i

√
0.22,−i

√
0.22. The final

eigenvalue must go into itself by a rotation of 180 degrees and
thus must be 0.
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An Implicit Theorem

Theorem

All finite stochastic matrices P have 1 as an eigenvalue and there
exist non-negative eigenvectors corresponding to λ = 1.

Proof.

Since each row of P sums to 1, #»y is a right eigenvector. Since all
finite chains have at least one positive persistent state, we know
there exists a closed irreducible subset S and the Markov chain
associated with S is irreducible positive persistent. We know for S
there exists an invariant probability vector. Assume P is a square
matrix of size n and rewrite P in block form with

P∗ =

[
P1 0
R Q

]
Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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An Implicit Theorem

Proof (Continued).

P1 is the probability transition matrix corresponding to S . Let
#»π = (π1, π2, . . . , πk) be the invariant probability vector for P1.
Define #»γ = (π1, π2, . . . , πk , 0, 0, . . . , 0) and note #»γP = #»γ . Hence
#»γ is a left eigenvector for P corresponding to λ = 1. Additionally,

n∑
i=1

γi = 1.

This shows that λ = 1 is the largest possible eigenvalue for a finite
stochastic matrix P.

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions



Markov Chains
Markov Chains and Linear Algebra

Sources

Introduction
Perron-Frobenius
Matrix Decompositions and Markov Chains
Spectral Representations

Another Theorem

Theorem

If P is the transition matrix for a finite Markov chain, then the
multiplicity of the eigenvalue 1 is equal to the number of
irreducible subsets of the chain.

Proof (First Half).

Arrange P based on the irreducible subsets of the chain C1,C2, . . . .

P =


P1 0 · · · 0 0
0 P2 · · · 0 0
...

... · · ·
...

...

0 0 · · · Pm
...

R1 R2 · · · Rm Q


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Another Theorem

Proof (First Half Continued).

Each Pk corresponds to a subset Ck for an irreducible positive
persistent chain. The #»xi s for each Ci are linearly independent; thus
the multiplicity for λ = 1 is at least equal to the number of subsets
C .
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An Infinite Decomposition

Theorem

Let {Xt ; t = 0, 1, 2, . . . } be a Markov chain with state {0, 1, 2, . . . }
and a transition matrix P. Let P be irreducible and consist of
persistent positive recurrent states. Then I − P = (A− I )(B − S)
where

A is strictly upper triangular with aij =
Ei{number of times X = j before X reaches ∆j−i}, i < j .

B is strictly lower triangular with bij = Pi{X i = j}, i > j .

S is diagonal where sj =
i−1∑
j=0

bij(and s0 = 0). Moreover,

aij <∞ and i < j .

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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Spectral Representations

Suppose we have a diagonalizable matrix A. Define Bk to be the
matrix obtained by multiplying the column vector fk with the row
vector πk where fk , πk are from A. Explicitly,

Bk = fkπk .

Then we can represent A in the following manner:

A = λ1B1 + λ2B2 + · · ·+ λnBn.

This is the spectral representation of A, and it holds some key
properties relevant to our discussion of Markov chains. For
example, for the k-th power of A we have

Ak = λk1B1 + · · ·+ λknBn.

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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A Final Example

Example

Let

P =

[
0.8 0.2
0.3 0.7

]
λ1 = 1; λ2 = .5. We can now calculate B1:

B1 = f1π1 =

[
0.6 0.4
0.6 0.4

]
Since P0 = I = B1 + B2 for k = 0,

B2 =

[
0.4 −0.4
−0.6 0.6

]
Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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A Final Example

Example (Continued)

Thus the spectral representation for Pk is

Pk =

[
0.6 0.4
0.6 0.4

]
+ (0.5)k

[
0.4 −0.4
−0.6 0.6

]
, k = 0, 1, . . .

The limit as k →∞ has (0.5)k approach zero, so

P∞ = lim
k

Pk =

[
0.6 0.4
0.6 0.4

]
.

Jack Gilbert Markov Chains, Stochastic Processes, and Matrix Decompositions
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