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Introduction

This paper seeks to explore, in some detail, the basics of stochastic processes and their
extensive relationship with Markov chains. This is primarily a study of the field of statistics.
However, by broadening our scope to consider techniques outside the realm of statistics,
we can utilize advanced techniques from linear algebra (and some basic ones, too!), thus
broadening and enhancing our understanding of these topics.

Probability Spaces

We proceed with our study of Markov chains by defining some of the basics of probability
spaces. Understanding these basic definitions is crucial to understanding the more compli-
cated ideas presented later in the paper, especially in our observations of matrix decompo-
sitions. Lets begin.

Definition 1. An event is a subset of a sample space. An event A is said to occur if and
only if the observed outcome ω ∈ A.

Definition 2. Given a sample space Ω and an event A, the events complement Ac is the
event which occurs if and only if A does not occur. Ac = {ω ∈ Ω‖ω /∈ A}.

Definition 3. If Ω is a sample space and if P is a function which associates a number for
each event in Ω, then P is called the probability measure provided that

a. for any event A, 0 ≤ P (A) ≤ 1
b. P (Ω) = 1

c. For any sequence A1, A2, . . . of disjoint events, P (
⋃∞
i=1Ai) =

∞∑
i=1

P (Ai).

Random Variables and Expected Outcomes

We will now shift our focus to the study of random variables, a key component of the study
of stochastic processes.

Definition 4. A random variable X with values in the set E is a function which assigns a
value X(ω) ∈ E to each outcome ω ∈ Ω.

When E is finite, X is said to be a discrete random variable.

Definition 5. The discrete random variables X1, . . . , Xn are said to be independent if P{X1 =
a1, . . . , Xn = an} = P{X1 = a1} · · ·P{Xn = an} for every a1, . . . , an ∈ E.

Expected values are the potential outcomes for each random variable. The expected
value for a random variable X taking values in the set E ⊂ R+ is
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E[X] =
∑
a∈E

aP{X = a}.

With these definitions in place, we can proceed to define Markov chains, which are the
primary focus of this paper.

Markov Chains

We now begin our study of Markov chains.

Definition 6. The stochastic process X = {Xn;n ∈ N} is called a Markov chain if P{Xn+1 =
j‖X0, . . . , Xn} = P{Xn+1 = j‖Xn} for every j ∈ E, n ∈ N.

So a Markov chain is a sequence of random variables such that for any n,Xn+1 is condi-
tionally independent of X0, . . . , Xn−1 given Xn. We use

P{Xn+1 = j‖Xn = i} = P (i, j) where i, j ∈ E

is independent of n. The probabilities P (i, j) are called the transition probabilities for
the Markov chain X. The Markov Chain is said to be time homogenous.

We can arrange the P (i, j) into a square matrix P called the transition matrix of the
Markov chain X. For example, for the set E = {1, 2, . . . } the transition matrix is

P =

P (0, 0) P (0, 1) P (0, 2) · · ·
P (1, 0) P (1, 1) P (1, 2) · · ·

...
...

... · · ·

 (1)

The basic notation we will use with regard to these matrices is as follows:

M(i, j) refers to the entry in row i, column j of matrix M .

Column vectors are represented by letters, i.e. f(i) is column fs i-th entry.

Row vectors are greek letters, i.e. π(j) is row πs j-th entry.

Definition 7. Let P be a square matrix with entries P (i, j) where i, j ∈ E. P is called a
Markov matrix over E if

a. For every i, j ∈ E,P (i, j) ≥ 0

b. For every i ∈ E,
∑
j∈E

P (i, j) = 1.

We can now present our first theorem.
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Theorem 1. For every n,m ∈ N with m ≥ 1 and i0, . . . , im ∈ E,

P{Xn+i = i, . . . , Xn+m = im‖Xn = i0} = P (i0, i1)P (i1, i2) · · ·P (im−1, im).

The following corollary provides more insight into this theorem.

Corollary 1. Let π be a probability distribution on E. Suppose P{X0 = i} = π(i) for every
i ∈ E. Then for every m ∈ N and i0, . . . , im ∈ E,

P{X0 = i0, X1 = i1, . . . , Xm = im} = π(i0)P (i0, i1) · · ·P (im−1, im).

Theorem 1 and Corollary 1 show that the joint distribution of X0, . . . , Xm is completely
specified for every m once the initial distribution π and transition matrix P are known. We
can get the joint distribution of Xn1, . . . , Xnk for any integer k ≥ 1 and n1, . . . , nk ∈ N. This
leads us to the following proposition.

For any m ∈ N,

P{Xn+m = j‖Xn = i} = Pm(i, j) for every i, j ∈ E and n ∈ N.

In other words, the probability that the chain moves from state i to that j in m steps is
the (i, j) entry of the n-th power of the transition matrix P . Thus for any m,n ∈ N,

Pm+n = PmP n

which in turn becomes

Pm+n(i, j) =
∑
k∈E

Pm(i, k)P n(k, j); i, j ∈ E.

This is called the Chapman-Kolmogorov equation. This states that when starting at state
i, in order for process X to be in state j after m+ n steps, it must be in some intermediate
state k after the m-th step and then move from state k into state j in the remaining n steps.
This is illustrated in the following example.

Example 1. Let X = {Xn;n ∈ N} be a Markov chain with state space E = {a, b, c} and
transition matrix

P =

1
2

1
4

1
4

2
3

0 1
3

3
5

2
5

0

 (2)

Then

P{X1 = b,X2 = c,X3 = a,X4 = c,X5 = a,X6 = c,X7 = b‖X0 = c} (3)

= P (c, b)P (b, c)P (c, a)P (a, c)P (c, a)P (a, c)P (c, b) (4)

=
2

5
∗ 1

3
∗ 3

5
∗ 1

4
∗ 3

5
∗ 1

4
∗ 2

5
(5)

=
3

2500
. (6)
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The two-step transition probabilities are given by

P =

17
30

9
40

5
24

8
15

3
10

1
6

17
30

3
20

17
60

 (7)

where in this case P{Xn+2 = c‖Xn = b} = P 2(b, c) = 1
6
.

State Spaces

With an understanding of the Chapman-Kolmogorov equation as the basis of our study of
Markov chains and Markov matrices we can move on to our classification of the various
states we will encounter throughout this paper. We will define these states now.

Definition 8. Given a Markov chain X, a state space E, a transition matrix P , let T be
the time of the first visit to state j and let Nj be the total visits to state j. Then

a. j is recurrent if Pj{T <∞} = 1. Otherwise, j is transient if Pj{T = +∞} > 0

b. A recurrent state j is null if Ej[T= ∞; otherwise j is non-null

c. A recurrent state j is periodic with period δ if δ ≥ 2 is the largest integer for Pj{T = nδ
for some n ≥ 1} = 1.

So if j is recurrent, F (j, j) = 1 so the probability of returning to state j is 1. If j is
transient, F (j, j) < 1 and there is a positive probability of never returning to state j. This
leads us to our next theorem.

Theorem 2. If j is transient or recurrent null, then for every i ∈ E, limn→∞ P
n(i, j) = 0.

If j is recurrent non-null aperiodic, then π(j) = limn→∞ P
n(j, j) > 0 and for every i ∈

E, limn→∞ P
n(i, j) = F (i, j)π(j).

So if j is periodic with period δ then returning to j is only possible on steps δ, 2δ, 3δ, . . .
and the same is true of each successive return to j. Hence

P n(j, j) = Pj{Xn = j} > 0only ifn ∈ {0, δ, 2δ, . . . }.
In order to tell whether P n(j, j) > 0 or not, we do not need to calculate P n(j, j). Instead

we say j can be reached from i, i→ j, if there exists an integer n ≥ 0 such that P n(i, j) > 0.
Thus for i 6= j, i→ j if and only if F (i, j) > 0. In order for i→ j there must be a sequence
i1, i2, . . . , in of states such that P (i, i1) > 0, P (i1, i2) > 0, . . . , P (in, j) > 0. Otherwise
P n(i, j) = 0 for every n and thus it is impossible for i→ j.

Definition 9. a. A set of states is closed if no state outside the set can be reached from
within the set
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b. A state forming a closed set by itself is called an absorbing state

c. A closed set is irreducible if no proper subset of it is closed

d. A Markov chain is irreducible if its only closed set is the set of all states.

Example 2. Consider the Markov chain with state space E = {a, b, c, d, e} and transition
matrix

P =


1
2

0 1
2

0 0
0 1

4
0 3

4
0

0 0 1
3

0 2
3

1
4

1
2

0 1
4

0
1
3

0 1
3

0 1
3

 (8)

The closed sets are {a, b, c, d, e} and {a, c, e}. Since there exist two closed sets, the chain
is not irreducible. By deleting the second and fourth rows and column we end up with the
matrix

Q =

1
2

1
2

0
0 1

3
2
3

1
3

1
3

1
3

 (9)

which is the Markov matrix corresponding to the restriction of X to the closed set {a, c, e}.
We can rearrange P for easier analysis as such:

P* =


1
2

1
2

0 0 0
0 1

3
2
3

0 0
1
3

1
3

1
3

0 0
0 0 0 1

4
3
4

1
4

0 0 1
2

1
4



Recurrence and Irreducible Markov Chains

We have a lemma which shows that if j is recurrent and j → k, then k → j and F (k, j) = 1.
This should be intuitive based on our definition of a recurrent state: we know since j is
recurrent, F (j, j) = 1, so if j → k then it follows that k → i must at some point return to
j, i→ j. This notion of recurrence gives us the basis of the following theorem.

Theorem 3. From a recurrent state, only recurrent states can be reached.

From this theorem we know that no transient state can be reached from any recurrent
state and thus the set of all recurrent states is closed. This leads us to one of the main
results of Markov matrices. First, a lemma, and then our main theorem:

Lemma 1. For each recurrent state j there exists an irreducible closed set C which includes
j.
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Proof. Let j be a recurrent state and let C be the set of all states which can be reached from
j. Then C is a closed set. We show if i, k ∈ C then i→ k:

If i ∈ C then j → i. Since j is recurrent, our previous lemma implies that i→ j. There
must be some state k such that j → k, and thus i→ k.

We will use this lemma in formulating the following theorem.

Theorem 4. In a Markov chain, the recurrent states can be divided uniquely into irreducible
closed sets C1, C2, . . .

The proof follows directly from the lemma preceding it. In addition to C = C1∪C2∪ . . .
of recurrent states, the chain includes transient states as well (since recurrent states can be
reached via transient states). Using this theorem we can arrange our transition matrix in
the following form:

P =


P1 0 0 · · · 0
0 P2 0 · · · 0
0 0 P3 · · · 0
...

...
... vdots

...
Q1 Q2 Q3 · · · Q

 (10)

where P1, P2, . . . are the Markov matrices corresponding to sets C1, C2, . . . of states. Each
one of these sets is an irreducible Markov chain. The following theorem ties this all together.

Theorem 5. Let X be an irreducible Markov chain. Then either all states are transient, or
all are recurrent null, or all are recurrent non-null. Either all states are aperiodic, or else
all are periodic with the same period δ.

The following corollaries conclude this section of the paper.

Corollary 2. Let C be an irreducible closed set with finitely many states. Then no state in
C is recurrent null.

Corollary 3. If C is an irreducible closed set with finitely many states, then C has no
transient states.

In the case with finitely many states we now have all the tools necessary to classify the
states! We first identify the irreducible closed sets, then use our theorem and corollaries
to conclude that all states belonging to an irreducible closed set are recurrent non-null; the
remaining states, if any, are transient; and periodicity is determined by again applying our
theorem.

Markov Chains and Linear Algebra

How does this study of Markov chains and transition matrices relate to linear algebra? First,
a theorem to give you some of the flavor:
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Theorem 6. Let X be an irreducible Markov chain. Consider the system of linear equations

#»v (j) =
∑
i∈E

#»v (i)P (i, j), j ∈ E.

Then all states are recurrent non-null if and only if there exists a solution #»v with∑
j∈E

#»v (j) = 1.

If there is a solution #»v then #»v (j) > 0 for every j ∈ E, and #»v is unique.
We now fully engage with linear applications of Markov chains and stochastic matrices.

The Perron-Frobenius Theorem

We can use the general case of a theorem proved by a mathematician named Perron in 1907
and extended by Frobenius in 1912 to obtain a corollary with some interesting properties
pertaining to our understanding of Markov chains. The proof of this theorem has been
omitted, as it favors an analysis approach which would not be suited for this paper; however,
its corollary will be crucial to our discussion.

Theorem 7. Perron-Frobenius part 1:
Let A be a square matrix of size n with non-negative entries. Then

1. A has a positive eigenvalue λ0 with left eigenvector #»x0 such that #»x0 is non-negative
and non-zero
2. If λ is any other eigenvalue of A, ‖λ‖ ≤ λ0
3. If λ is an eigenvalue of A and ‖λ‖ = λ0, then µ = λ

λ0
is a root of unity and µkλ0 is an

eigenvalue of A for k = 0, 1, 2, . . .

Theorem 8. Perron-Frobenius part 2:
Let A be a square matrix of size n with non-negative entries such that Am has all positive

entries for some m. Then

1. A has a positive eigenvalue λ0 with a corresponding left eigenvector #»x0 where the en-
tries of #»x0 are positive
2. If λ is any other eigenvalue of A, ‖λ‖ < λ0
3. λ0 has multiplicity 1.

We will now give the corollary related to the Perron-Frobenius theorems.

Corollary 4. Let P be an irreducible Markov matrix. Then 1 is a simple eigenvalue of P .
For any other eigenvalue λ of P we have ‖λ‖ ≤ 1. If P is aperiodic then ‖λ‖ < 1 for all
other eigenvalues of P . If P is periodic with period δ then there are δ eigenvalues with an
absolute value equal to 1. These are all distinct and are

λ1 = 1, λ2 = c, . . . , λδ = cδ−1; c = e2πi/δ.
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Here well use an example which will reveal some of the more interesting results of these
theorems and their corollary.

Example 3.

P =


0 0 0.2 0.3 0.5
0 0 0.5 0.5 0

0.4 0.6 0 0 0
1 0 0 0 0

0.2 0.8 0 0 0

 (11)

P is irreducible and periodic with period δ = 2. Then

P 2 =


0.48 0.52 0 0 0
0.70 0.30 0 0 0

0 0 0.38 0.42 0.20
0 0 0.20 0.30 0.50
0 0 0.44 0.46 0.10

 (12)

The eigenvalues of the 2 by 2 matrix in the top-left corner of P 2 are 1 and -0.22. This is
sufficient enough to compute all eigenvalues of P by using the Perron-Frobenius theorems,
which imply that the set of eigenvalues of a periodic irreducible matrix P , when regarded as
a system of points in the complex plane, goes over into itself under a rotation of the plane
by the angle 2π/δ. Wow! Since 1,−0.22 are eigenvalues of P , their square roots will be
eigenvalues for P : 1,−1, i

√
0.22,−i

√
0.22. The final eigenvalue must go into itself by a

rotation of 180 degrees and thus must be 0.

It is worth taking the time to pause and consider an idea that has been implicit in several
of these theorems. We will now take the time to make this explicit:

Theorem 9. All finite stochastic matrices P have 1 as an eigenvalue and there exist non-
negative eigenvectors corresponding to λ = 1.

We will use this theorem throughout the remainder of the paper, so it is worth proving.

Proof. Since each row of P sums to 1, #»y is a right eigenvector. We try to find a left
eigenvector with non-negative components that sum to 1:

Since all finite chains have at least one positive persistent state, we know there exists a
closed irreducible subset S and the Markov chain associated with S is irreducible positive
persistent. We know for S there exists an invariant probability vector. Assume P is a square
matrix of size n and rewrite P in block form with

P∗ =

[
P1 0
R Q

]
(13)

where P1 is the probability transition matrix corresponding to S. Let #»π = (π1, π2, . . . , πk)
be the invariant probability vector for P1. Define #»γ = (π1, π2, . . . , πk, 0, 0, . . . , 0) and note
#»γ P = #»γ . Hence #»γ is a left eigenvector for P corresponding to λ = 1. Additionally,
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n∑
i=1

γi = 1.

This theorem shows that λ = 1 is the largest possible eigenvalue for a finite stochastic
matrix P . This fact is related to the irreducibility of the Markov chain determined by P ,
which we will show in the next theorem.

Theorem 10. If P is the transition matrix for a finite Markov chain, then the multiplicity
of the eigenvalue 1 is equal to the number of irreducible subsets of the chain.

Proof. The first half of this proof goes as follows. Arrange P in block form based on the
irreducible subsets of the chain C1, C2, . . . as before.

P =


P1 0 · · · 0 0
0 P2 · · · 0 0
...

... · · · ...
...

0 0 · · · Pm
...

R1 R2 · · · Rm Q

 (14)

Each Pk corresponds to a subset Ck for an irreducible positive persistent chain. The #»xis
for each Ci are linearly independent; thus the multiplicity for λ = 1 is at least equal to the
number of subsets C.

Advanced Matrix Decomposition and Markov Chains

The last topic we will examine in this paper deals with matrix decompositions and Markov
chains. We will start by looking at infinite stochastic matrices. We can apply techniques
of linear decomposition to infinite stochastic matrices to characterize matrices with some
interesting stochastic properties. We will begin with a theorem.

Theorem 11. Let {Xt; t = 0, 1, 2, . . . } be a Markov chain with state {0, 1, 2, . . . } and a
transition matrix P . Let P be irreducible and consist of persistent positive recurrent states.
Then

I − P = (A− I)(B − S)

where A is strictly upper triangular with aij = Ei[number of times X = j before X reaches ∆j−i], i <
j;

B is strictly lower triangular with bij = Pi{X i
1 = j}, i > j;

and S is diagonal where sj =
i−1∑
j=0

bij(and s0 = 0).

Moreover, aij <∞ and i < j.
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This primary result can then be used to find the stationary distribution, the matrix of
mean first-passage times, and the fundamental matrix for discrete-time Markov chains. How
nice!

The final result we will examine takes the previous theorem and extends it to for null-
recurrent and transient cases.

Theorem 12. Define ED to be the diagonal matrix with entries ei on the diagonal where
ei = Pi(Xn /∈ {0, 1, 2, . . . }) for n ≥ 1. Then for every infinite irreducible stochastic matrix
P with A,B and entries aij, bij respectively,

1. I − P = (A− I)(B − S) + ED

2. P is recurrent if and only if I − P = (A− I)(B − S), or in other words, if ED = 0.

Spectral Representations

Suppose we have a diagonalizable matrix A. Define Bk to be the matrix obtained by multi-
plying the column vector fk with the row vector πk where fk, πk are from A. Explicitly,

Bk = fkπk.

Then we can represent A in the following manner:

A = λ1B1 + λ2B2 + · · ·+ λnBn.

This is the spectral representation of A, and it holds some key properties relevant to our
discussion of Markov chains. For example, for the k-th power of A we have

Ak = λk1B1 + · · ·+ λknBn.

This provides the means for computing the k-step transition matrix of A. This may then
be used to obtain the limits of Ak as k →∞, along with estimates of the rate of convergence
and bounds for error involved in certain calculations. An example will highlight some of these
properties:

Example 4. Let

P =

[
0.8 0.2
0.3 0.7

]
(15)

We get from P1 = 1 that λ1 = 1 and f1 = 1 is its eigenvector. Since the trace of P is
1.5 and the sum of the eigenvalues of P equal the trace of P, λ2 must be 0.5. We can now
calculate B1:

B1 = f1π1 =

[
0.6 0.4
0.6 0.4

]
(16)

and since P 0 = I = B1 +B2 for k = 0,
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B2 =

[
0.4 −0.4
−0.6 0.6

]
(17)

Thus the spectral representation for P k is

P k =

[
0.6 0.4
0.6 0.4

]
+ (0.5)k

[
0.4 −0.4
−0.6 0.6

]
, k = 0, 1, . . . (18)

The limit as k →∞ has (0.5)k approach zero, so

P∞ = lim
k
P k =

[
0.6 0.4
0.6 0.4

]
(19)

Using spectral representations and given certain conditions we can relatively easily calcu-
late powers of P . This is done via a process quite similar to diagonalization. We begin by
first applying a theorem which holds for general finite matrices, and then we apply our result
to stochastic matrices.

Theorem 13. Let A be a square matrix of size n with n linearly independent eigenvectors
#»x1,

#»x2, . . . ,
# »xn and associated eigenvalues λ1, λ2, . . . , λn. Define the matrices L,D by

L =


#»x1
#»x2
...

# »xn


and

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

...
0 0 0 · · · λn

 (20)

Then A = L−1DL.

This can be applied for size n stochastic matrices. If P contains a set n of linearly
independent left eigenvectors then P k can be determined from L−1DL.

Conclusion

Markov chains and their affiliated transition matrices have a wide variety of application both
within the field of math and in real-world application. By understanding how linear algebra
interacts with Markov chains, one gains a deeper intuition as to how stochastic matrices
can be manipulated while still retaining their statistical properties in such a way that proves
useful.
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