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Elementary Reactions

A + B → C + D

NO(g) + O3(g)→ NO2(g) + O2(g)
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Arrhenius Equation

k = Ae−Ea/RT
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ln k =
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T
+ lnA

y = m x + b
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ln k =
−Ea

R

1

T
+ lnA

y = m x + b

A = eb = e ln k

Ea = −mR
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Arrhenius Equation

Table : Temperature Dependence of the Rate Constant in the Formation
of Nitrogen Dioxide and Oxygen Gas

T (K ) k (M−1s−1) ln k 1
T (K−1)

300 1.21× 1010 23.216 3.33× 10−3

325 1.67× 1010 23.539 3.08× 10−3

350 2.20× 1010 23.841 2.86× 10−3

375 2.79× 1010 24.052 2.67× 10−3

400 3.45× 1010 24.264 2.50× 10−3

425 4.15× 1010 24.449 2.35× 10−3
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3.33× 10−3 1
3.08× 10−3 1
2.86× 10−3 1
2.67× 10−3 1
2.50× 10−3 1
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Preliminaries

Theorem

If T is size m × n with m ≥ n, then T has full rank if and only if
its columns form a linearly independent set.

T =


t1 1
t2 1
...

...
tn 1

 T has full rank.
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Normal Equations

Use when...

no rounding errors

speed is important

Benefits:

T can be any size

T has full rank so x will always be unique

Becky Hanscam Linear Least-Squares Application in Chemical Kinetic Data



Chemical Perspective
Least-Square Methods

Summary

Preliminaries
Normal Equations
QR Decomposition
Cholesky Factorization
SVD

Normal Equations

Use when...

no rounding errors

speed is important

Benefits:

T can be any size

T has full rank so x will always be unique

Becky Hanscam Linear Least-Squares Application in Chemical Kinetic Data



Chemical Perspective
Least-Square Methods

Summary

Preliminaries
Normal Equations
QR Decomposition
Cholesky Factorization
SVD

Normal Equations

Theorem

The least-squares solution to Tx = k is also a solution to
T ∗Tx = T ∗k, the normal equations, where the function
r(x) = ‖Tx− k‖2 is minimized.
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Normal Equations

T ∗Tx = T ∗k

[
4.7656× 10−5 0.01679

0.01679 6

] [
m
b

]
=

[
0.40025
143.334

]

m = −1256.73203263⇒ Ea = 10.44847012 kJ
mol

b = 27.405755138⇒ A = 7.983038593× 1011
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Use when...

rounding errors are present

speed is not important

Benefits:

T can be any size

T has full rank so x will always be unique
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QR Decomposition
via the Gram-Schmidt Procedure

Theorem

Suppose that T is an m× n matrix of rank n. Then there exists an
m × n matrix Q whose columns form an orthonormal set, and an
upper-triangular matrix R of size n with positive diagonal entries,
such that T = QR.
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QR Decomposition
via the Gram-Schmidt Procedure

T = [t1|t2]

= [u1|u2]

[
1
−t∗1 t2
t∗1 t1

0 1

]−1
Gram-Schmidt on t1 and t2

= [q1|q2]

[
1
‖u1‖

−t∗1 t2
t∗1 t1

0 1
‖u2‖

]−1
u1 and u2 scaled by their norm

= QR
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QR Decomposition
via the Gram-Schmidt Procedure

T =



0.4824 −0.5954
0.4462 −0.2926
0.4143 −0.0262
0.3868 0.2039
0.3621 0.4098
0.3404 0.5914


[

6.9034× 10−3 2.4322
0 0.2909

]
= QR
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QR Decomposition
via the Gram-Schmidt Procedure

From the normal equations: Rx = Q∗k

m = −1256.73203263 ⇒ Ea = 10.44847012 kJ
mol

b = 27.405755138 ⇒ A = 7.983038593× 1011

Notes:

Preserves entry values when calculated over RDF

Solutions equal to those calculated directly from the normal
equations
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Cholesky Factorization

Use when...

no rounding errors

speed is important

Benefits:

T can be any size

T has full rank so x will always be unique
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Cholesky Factorization

Definition

If 〈x,Ax〉 > 0 for all x then A is a symmetric positive definite
matrix where x 6= 0.

T ∗T =

[
4.7656× 10−5 0.01679

0.01679 6

]
T is a symmetric positive definite matrix.
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Cholesky Factorization

Theorem

If T ∗T is symmetric positive definite then there exists a unique
upper triangular matrix G with positive diagonal entries such that
T ∗T = G ∗G .
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Cholesky Factorization

Proof:

T ∗T = A =

[
a y∗

y B

]

=

[ √
a 0∗

1√
a
y I

] [
1 0∗

0 B − 1
ayy
∗

] [ √
a 1√

a
y∗

0 I

]

= G1
∗A1G1

After n interations:

A = G ∗n . . .G
∗
2G
∗
1 IG1G2 . . .Gn = G ∗G

Becky Hanscam Linear Least-Squares Application in Chemical Kinetic Data



Chemical Perspective
Least-Square Methods

Summary

Preliminaries
Normal Equations
QR Decomposition
Cholesky Factorization
SVD

Cholesky Factorization

Note:
The entry in the upper left corner of the matrix B − 1

ayy
∗ is always

positive.

a = 〈e2,A1G
−1
1 e2〉 > 0 where x = G−11 e2
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Cholesky Factorization

T ∗T =

[
4.7656× 10−5 0.01679

0.01679 6

]
=

[
6.90× 10−3 0

2.4322 0.29093

] [
6.90× 10−3 2.4322

0 0.29093

]
= G ∗G .
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Cholesky Factorization

From the normal equations: G ∗Gx = T ∗k

m = −1256.74352341 ⇒ Ea = 10.44856565 kJ
mol

b = 27.4057876928 ⇒ A = 7.983289484× 1011
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SVD

Use when...

T is rank deficient

speed is not important

Benefits:

Method is rank revealing

Only method that holds when T is rank deficient

T has full rank so x will always be unique
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SVD

Theorem

If T is a real m × n matrix then there exists orthogonal matrices

U = [u1|...|um] and V = [v1|...|vn],

where U is size m and V is size n, such that T = USV ∗. S is a
diagonal matrix with diagonal entries

√
δ1, ...,

√
δn, where δ1, ..., δn

are eigenvalues of the matrix T ∗T .
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SVD

The eigenvalues of T ∗T , δ1, δ2, are {6.72278×10−7, 6}
The singular values of T are s1 =

√
δ1 = 8.199× 10−4 and

s2 =
√
δ2 = 2.4495

S = [s1e1|s2e2] =



8.199× 10−4 0
0 2.4495
0 0
0 0
0 0
0 0
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The eigenvectors for δ1 and δ2 are x1 and x2

V ∗ = [x1|x2]∗ =

[
−0.999996 0.002798
−0.002798 −0.999996

]
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SVD

y1 = 1√
δ1
Tx1 and y2 = 1√

δ2
Tx2

The eigenvectors of TT ∗ for the zero eigenvalue are
y3, y4, y5, and y6

U = [y1|y2|y3|y4|y5|y6]

=



−0.6484 −0.4082 −0.6426 −0.3462 −0.0027 −0.0339
−0.3435 −0.4082 0.6061 0.3246 −0.4845 −0.2459
−0.0752 −0.4082 0.3353 0.1676 0.5944 0.7266
0.1565 −0.4082 0.1014 0.3999 −0.0264 −0.5969
0.3638 −0.4082 −0.1078 −0.7408 0.4113 0.2215
0.5468 −0.4082 −0.2924 0.1949 −0.4920 −0.0713
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From the normal equations, SV ∗x = U∗k, we get



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 so

the system is inconsistent.
Let C = SV ∗ and b = U∗k, then solve the system C ∗Cx = C ∗b.

m = −1256.73203461 ⇒ Ea = 10.44847014 kJ
mol

b = 27.4057551435 ⇒ A = 7.983038637× 1011

Note: When T is rank deficient, x is given directly.
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Table : Results of Various Least-squares Methods for the Calculation of
the Activation Energy and Frequency Factor

Calculation Method Ea (kJ/mol) A

Estimation 10.4 8.0×1011

Normal Equations 10.44847012 7.983038593×1011

QR Decomposition 10.44847012 7.983038593×1011

Singular Value Decomposition 10.44847014 7.983038637×1011

Cholesky Factorization 10.44856565 7.983289484×1011
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Ea=10.5 kJ/molNO(g)+ O3(g)

Reactants

Products
NO2(g)+ O2(g)

Reaction

En
er

gy
 (k

J/m
ol

)

-200

0

50

Figure : Energy profile for reaction NO(g) + O3(g)→ NO2(g) + O2(g)

Ea = 10.448 kJ
mol A = 7.983× 1011
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