The Pseudoinverse Moore-Penrose Inverse and Least Squares

Ross MacAusland

University of Puget Sound

April 23, 2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Outline

1 The Pseudoinverse

- Generalized inverse
- Moore-Penrose Inverse

2 Construction

- QR Decomposition
- SVD
- 3 Application
 - Least Squares

・ロト (周) (E) (E) (E) (E)

Generalized inverse Moore-Penrose Inverse

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Table of Contents

1 The Pseudoinverse

- Generalized inverse
- Moore-Penrose Inverse

2 Construction

- QR Decomposition
- SVD
- 3 ApplicationLeast Squares

Generalized inverse Moore-Penrose Inverse

What is the Generalized Inverse?

Any inverse-like matrix

Ross MacAusland Pseudoinverse

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Generalized inverse Moore-Penrose Inverse

What is the Generalized Inverse?

- Any inverse-like matrix
- Satisfies $AA^{-}A = A$

Generalized inverse Moore-Penrose Inverse

What is the Generalized Inverse?

- Any inverse-like matrix
- Satisfies $AA^{-}A = A$
- Guaranteed existence, not uniqueness.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Generalized inverse Moore-Penrose Inverse

What is the Generalized Inverse?

- Any inverse-like matrix
- Satisfies $AA^{-}A = A$
- Guaranteed existence, not uniqueness.

Example

ALA = A(LA) = AI = AARA = (AR)A = IA = A

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Generalized inverse Moore-Penrose Inverse

Defining the Pseudoinverse

Definition

If $A \in \mathbb{M}^{n \times m}$, then there exists a unique $A^+ \in \mathbb{M}^{m \times n}$ that satisfies the four Penrose conditions:

$$AA^+A = A$$

2
$$A^+AA^+ = A^+$$

3
$$A^+A = (A^+A)^*$$
 Hermitian

4
$$AA^+ = (AA^+)^*$$
 Hermitian

Generalized inverse Moore-Penrose Inverse

Properties of the Pseudoinverse

Guaranteed existence and uniqueness

Generalized inverse Moore-Penrose Inverse

Properties of the Pseudoinverse

- Guaranteed existence and uniqueness
- If A is nonsingular $A^+ = A^{-1}$

Generalized inverse Moore-Penrose Inverse

Properties of the Pseudoinverse

- Guaranteed existence and uniqueness
- If A is nonsingular $A^+ = A^{-1}$
- The pseudoinverse of the pseudoinverse is the original matrix (A⁺)⁺ = A

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Generalized inverse Moore-Penrose Inverse

Properties of the Pseudoinverse

- Guaranteed existence and uniqueness
- If A is nonsingular $A^+ = A^{-1}$
- The pseudoinverse of the pseudoinverse is the original matrix (A⁺)⁺ = A

$$\blacksquare (AB)^+ = B^+ A^+$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Generalized inverse Moore-Penrose Inverse

Properties of the Pseudoinverse

For any *A* ∈ C^{*n*×*m*} there exists a *A*⁺ ∈ C^{*m*×*n*}
 N(*A*^{*}) = *N*(*A*⁺) and *R*(*A*^{*}) = *R*(*A*⁺)

Generalized inverse Moore-Penrose Inverse

Properties of the Pseudoinverse

- For any $A \in \mathbb{C}^{n \times m}$ there exists a $A^+ \in \mathbb{C}^{m \times n}$
- $N(A^*) = N(A^+)$ and $R(A^*) = R(A^+)$
- $\blacksquare R(A) \oplus N(A^+) = \mathbb{C}^n \text{ and } R(A^+) \oplus N(A) = \mathbb{C}^m$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Properties of the Pseudoinverse

- For any $A \in \mathbb{C}^{n \times m}$ there exists a $A^+ \in \mathbb{C}^{m \times n}$
- $N(A^*) = N(A^+)$ and $R(A^*) = R(A^+)$
- $R(A) \oplus N(A^+) = \mathbb{C}^n$ and $R(A^+) \oplus N(A) = \mathbb{C}^m$
- *HH*⁺ is an orthogonal projection onto *R*(*A*), and using similar *H*⁺*H* is an orthogonal projection onto *N*(*A*).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

QR Decomposition SVD

Table of Contents

The Pseudoinverse Generalized inverse Moore-Penrose Inverse

2 Construction

- QR Decomposition
- SVD
- 3 ApplicationLeast Squares

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

QR Decomposition SVD

QR Decomposition

There are two ways of constructing the Pseudoinverse using QR.

If *A* is $n \times m$ and n > m with rank equal to *m* then $A = Q \begin{bmatrix} R_1 \\ \mathcal{O} \end{bmatrix}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

QR Decomposition

There are two ways of constructing the Pseudoinverse using QR.

- If *A* is $n \times m$ and n > m with rank equal to *m* then $A = Q \begin{bmatrix} R_1 \\ \mathcal{O} \end{bmatrix}$
- Then the pseudoinverse can be found by

$$A^+ = \begin{bmatrix} R_1^{-1} & \mathcal{O}^* \end{bmatrix} Q^*.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

QR Decomposition

There are two ways of constructing the Pseudoinverse using QR.

- If *A* is $n \times m$ and n > m with rank equal to *m* then $A = Q \begin{bmatrix} R_1 \\ O \end{bmatrix}$
- Then the pseudoinverse can be found by

$$A^+ = \begin{bmatrix} R_1^{-1} & \mathcal{O}^* \end{bmatrix} Q^*.$$

This only works if rank is equal to the minimum of *m* and *n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

QR Decomposition SVD

QR Decomposition

The second way finds the pseudoinverse for the singular case If *A* is $n \times n$ and rank is less than *n* then $A = Q \begin{bmatrix} R_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$

・ロト (周) (E) (E) (E) (E)

QR Decomposition SVD

QR Decomposition

The second way finds the pseudoinverse for the singular case

- If *A* is $n \times n$ and rank is less than *n* then $A = Q \begin{bmatrix} R_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$
- Then the pseudoinverse can be found by Then the pseudoinverse can be found by $A^+ = U \begin{bmatrix} R_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q^*$

・ロト (周) (E) (E) (E) (E)

QR Decomposition SVD

QR Example

Example

• Let
$$A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$

Ross MacAusland

Pseudoinverse

QR Decomposition SVD

QR Example

Example

• Let
$$A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$

• $Q = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \end{bmatrix} R = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$

Ross MacAusland

Pseudoinverse

QR Decomposition SVD

QR Example

Example

• Let
$$A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$

• $Q = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \end{bmatrix} R = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$
• $R_1^{-1} = \begin{bmatrix} 1/2 & -3/10 & -2/5 \\ 0 & 1/5 & 1/10 \\ 0 & 0 & 1/4 \end{bmatrix}$

QR Decomposition SVD

QR Example

Example

$$\blacksquare A^+ = \begin{bmatrix} R_1^{-1} & \mathcal{O}^* \end{bmatrix} Q^*$$

Ross MacAusland Pseudoinverse

<ロ>

QR Decomposition SVD

<ロ>

QR Example

Example

•
$$A^{+} = \begin{bmatrix} R_{1}^{-1} & \mathcal{O}^{*} \end{bmatrix} Q^{*}$$

• $A^{+} = \begin{bmatrix} 1/5 & 3/10 & -1/10 & 3/5 \\ -1/20 & 1/20 & 3/20 & -3/20 \\ 1/8 & -1/8 & 1/8 & -1/8 \end{bmatrix}$
• $A^{+}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Ross MacAusland Pseudoinverse

QR Decomposition SVD

SVD Construction

Ross MacAusland Pseudoinverse

QR Decomposition SVD

SVD Construction

SVD can be represented by $A = UDV^*$

• or by
$$A = \sum_{i=1}^r s_i x_i y_i^*$$

• the pseudoinverse can be found by $A^+ = VD^+U^*$

• or
$$A^+ = \sum_{i=1}^r s_i^{-1} y_i x_i^*$$

QR Decomposition SVD

SVD Example

Example

•
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \sqrt{3} & 0 \end{bmatrix}$$
 then $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

Ross MacAusland Pseudoinverse

QR Decomposition SVD

SVD Example

Example

•
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \sqrt{3} & 0 \end{bmatrix}$$
 then $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$
• Solving for D^+ , $D^+ = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and
 $A^+ = \begin{bmatrix} .25 & 00.433012701892 \\ 0 & 1 & 0 \end{bmatrix}$
• $A^+A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Least Squares

Table of Contents

The Pseudoinverse Generalized inverse Moore-Penrose Inverse

2 Construction

- QR Decomposition
- SVD

Application Least Squares

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Least Squares

Least Squares Review

•
$$Ax = b$$

• $x_0 = A^{-1}b$

Ross MacAusland Pseudoinverse

Least Squares

Least Squares Review

- Ax = b
- $\blacksquare x_0 = A^{-1}b$
- When A is singular, A^{-1} does not exist

Least Squares Review

• Ax = b

$$x_0 = A^{-1}b$$

- When A is singular, A^{-1} does not exist
- $x_0 = A^+ b = (A^* A)^{-1} A^* b = A^+ b$
- A has full column rank, n > m. A⁺ solves the least squares solution

Least Squares Review

• Ax = b

$$x_0 = A^{-1}b$$

- When A is singular, A^{-1} does not exist
- $x_0 = A^+ b = (A^* A)^{-1} A^* b = A^+ b$
- A has full column rank, n > m. A⁺ solves the least squares solution
- similarly $A^+ = A^*(AA^*)^{-1}$ when A has full row rank.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Least Squares

Digital Image Restoration

Recovery of a degraded images

Least Squares

Digital Image Restoration

- Recovery of a degraded images
- Many algorithms are used for a variety of reasons

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Digital Image Restoration

- Recovery of a degraded images
- Many algorithms are used for a variety of reasons
- The Improvement in signal-to-noise ratio (ISNR) and required computational time compare algorithms

・ロト (周) (E) (E) (E) (E)

Digital Image Restoration

- Recovery of a degraded images
- Many algorithms are used for a variety of reasons
- The Improvement in signal-to-noise ratio (ISNR) and required computational time compare algorithms
- Moore-Penrose inverse is one of the most efficient algorithms

・ロト (周) (E) (E) (E) (E)

Least Squares

Digital Image Restoration Example

•
$$x_{in} = H^+ x_{out}$$

Where H is the matrix representation of how the image was degraded by a uniform linear motion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Least Squares

Digital Image Restoration

Original image

Degraded image

Least Squares

Digital Image Restoration

Generalized inverse reconstructed image

Lagrange reconstructed image

Digital Image Restoration

Table 1: ISNR and computational time results for 10 random matrices.

a	Ginv ISNR	Lagrange ISNR	Ginv computation time	Lagrange computation time
5	0.3534	0.3587	6.4210	9.2040
10	0.3485	0.3635	7.0780	10.0970
15	0.3484	0.3618	8.7940	10.6780
20	0.3475	0.3568	9.1990	11.6580
25	0.3457	0.3698	9.7760	12.0000
30	0.3537	0.3643	10.1810	12.5540
35	0.3546	0.3651	10.7710	12.5320
40	0.3524	0.3623	11.1230	13.1120
45	0.3642	0.3660	11.8990	14.3230
50	0.3559	0.3778	12.1400	14.9670

Ross MacAusland

▶ ΞΙ= ৩৫0

References

Applications of the Moore-Penrose Inverse in Digital Image Restoration Spiros Chountasis, Vasilios N. Katsikis, and Dimitrios Pappas, Mathematical Problems in Engineering, vol. 2009, Article ID 170724

Generalized Inverses: Theory and Applications Adi Ben-Israel, Thomas N.E. Greville; 2001

 Matrix Algebra: Theory, Computations, and Applications in Statistics
 James E. Gentle; New York, NY: Springer, 2007.

・ロト (周) (E) (E) (E) (E)