The Pseudoinverse
 Moore-Penrose Inverse and Least Squares

Ross MacAusland
University of Puget Sound

April 23, 2014

Outline

1 The Pseudoinverse
■ Generalized inverse
■ Moore-Penrose Inverse

2 Construction
■ QR Decomposition
■ SVD

3 Application
■ Least Squares

Table of Contents

1 The Pseudoinverse
■ Generalized inverse
■ Moore-Penrose Inverse

2 Construction

- QR Decomposition
- SVD

3 Application
■ Least Squares

What is the Generalized Inverse?

- Any inverse-like matrix

What is the Generalized Inverse?

- Any inverse-like matrix
- Satisfies $A A^{-} A=A$

What is the Generalized Inverse?

■ Any inverse-like matrix

- Satisfies $A A^{-} A=A$

■ Guaranteed existence, not uniqueness.

What is the Generalized Inverse?

■ Any inverse-like matrix

- Satisfies $A A^{-} A=A$

■ Guaranteed existence, not uniqueness.

$$
\begin{aligned}
& \text { Example } \\
& A L A=A(L A)=A I=A \\
& A R A=(A R) A=I A=A
\end{aligned}
$$

Defining the Pseudoinverse

Definition

If $A \in \mathbb{M}^{n \times m}$, then there exists a unique $A^{+} \in \mathbb{M}^{m \times n}$ that satisfies the four Penrose conditions:
$1 A A^{+} A=A$
$2 A^{+} A A^{+}=A^{+}$
$3 A^{+} A=\left(A^{+} A\right)^{*}$ Hermitian
$4 A A^{+}=\left(A A^{+}\right)^{*}$ Hermitian

Properties of the Pseudoinverse

■ Guaranteed existence and uniqueness

Properties of the Pseudoinverse

■ Guaranteed existence and uniqueness

- If A is nonsingular $A^{+}=A^{-1}$

Properties of the Pseudoinverse

■ Guaranteed existence and uniqueness

- If A is nonsingular $A^{+}=A^{-1}$
- The pseudoinverse of the pseudoinverse is the original matrix $\left(A^{+}\right)^{+}=A$

Properties of the Pseudoinverse

■ Guaranteed existence and uniqueness

- If A is nonsingular $A^{+}=A^{-1}$
- The pseudoinverse of the pseudoinverse is the original matrix $\left(A^{+}\right)^{+}=A$
■ $(A B)^{+}=B^{+} A^{+}$

Properties of the Pseudoinverse

■ For any $A \in \mathbb{C}^{n \times m}$ there exists a $A^{+} \in \mathbb{C}^{m \times n}$
■ $N\left(A^{*}\right)=N\left(A^{+}\right)$and $R\left(A^{*}\right)=R\left(A^{+}\right)$

Properties of the Pseudoinverse

■ For any $A \in \mathbb{C}^{n \times m}$ there exists a $A^{+} \in \mathbb{C}^{m \times n}$
■ $N\left(A^{*}\right)=N\left(A^{+}\right)$and $R\left(A^{*}\right)=R\left(A^{+}\right)$
■ $R(A) \oplus N\left(A^{+}\right)=\mathbb{C}^{n}$ and $R\left(A^{+}\right) \oplus N(A)=\mathbb{C}^{m}$

Properties of the Pseudoinverse

■ For any $A \in \mathbb{C}^{n \times m}$ there exists a $A^{+} \in \mathbb{C}^{m \times n}$

- $N\left(A^{*}\right)=N\left(A^{+}\right)$and $R\left(A^{*}\right)=R\left(A^{+}\right)$
- $R(A) \oplus N\left(A^{+}\right)=\mathbb{C}^{n}$ and $R\left(A^{+}\right) \oplus N(A)=\mathbb{C}^{m}$
- HH^{+}is an orthogonal projection onto $R(A)$, and using similar $\mathrm{H}^{+} \mathrm{H}$ is an orthogonal projection onto $N(A)$.

Table of Contents

1 The Pseudoinverse
■ Generalized inverse

- Moore-Penrose Inverse

2 Construction
■ QR Decomposition
■ SVD

3 Application
■ Least Squares

QR Decomposition

There are two ways of constructing the Pseudoinverse using QR.

■ If A is $n \times m$ and $n>m$ with rank equal to m then

$$
A=Q\left[\begin{array}{l}
R_{1} \\
\mathcal{O}
\end{array}\right]
$$

QR Decomposition

There are two ways of constructing the Pseudoinverse using QR.

- If A is $n \times m$ and $n>m$ with rank equal to m then

$$
A=Q\left[\begin{array}{c}
R_{1} \\
\mathcal{O}
\end{array}\right]
$$

- Then the pseudoinverse can be found by

$$
A^{+}=\left[\begin{array}{ll}
R_{1}^{-1} & \mathcal{O}^{*}
\end{array}\right] Q^{*} .
$$

QR Decomposition

There are two ways of constructing the Pseudoinverse using QR.

- If A is $n \times m$ and $n>m$ with rank equal to m then

$$
A=Q\left[\begin{array}{c}
R_{1} \\
\mathcal{O}
\end{array}\right]
$$

- Then the pseudoinverse can be found by $A^{+}=\left[\begin{array}{ll}R_{1}^{-1} & \mathcal{O}^{*}\end{array}\right] Q^{*}$.
- This only works if rank is equal to the minimum of m and n

QR Decomposition

The second way finds the pseudoinverse for the singular case
\square If A is $n \times n$ and rank is less than n then $A=Q\left[\begin{array}{cc}R_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$

QR Decomposition

The second way finds the pseudoinverse for the singular case
\square If A is $n \times n$ and rank is less than n then $A=Q\left[\begin{array}{cc}R_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$
■ Then the pseudoinverse can be found by Then the pseudoinverse can be found by $A^{+}=U\left[\begin{array}{cc}R_{1}^{-1} & 0 \\ 0 & 0\end{array}\right] Q^{*}$

QR Example

Example

- Let $A=\left[\begin{array}{ccc}1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0\end{array}\right]$

QR Example

Example

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
1 & -1 & 4 \\
1 & 4 & -2 \\
1 & 4 & 2 \\
1 & -1 & 0
\end{array}\right] \\
& \square Q=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2
\end{array}\right] \quad R=\left[\begin{array}{ccc}
2 & 3 & 2 \\
0 & 5 & -2 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

QR Example

Example

$$
\begin{aligned}
& \square \text { Let } A=\left[\begin{array}{ccc}
1 & -1 & 4 \\
1 & 4 & -2 \\
1 & 4 & 2 \\
1 & -1 & 0
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2
\end{array}\right] R=\left[\begin{array}{ccc}
2 & 3 & 2 \\
0 & 5 & -2 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right] \\
& R_{1}^{-1}=\left[\begin{array}{ccc}
1 / 2 & -3 / 10 & -2 / 5 \\
0 & 1 / 5 & 1 / 10 \\
0 & 0 & 1 / 4
\end{array}\right]
\end{aligned}
$$

QR Example

Example

■ $A^{+}=\left[\begin{array}{ll}R_{1}^{-1} & \mathcal{O}^{*}\end{array}\right] Q^{*}$

QR Example

Example

■ $A^{+}=\left[\begin{array}{ll}R_{1}^{-1} & \mathcal{O}^{*}\end{array}\right] Q^{*}$
$\square A^{+}=\left[\begin{array}{cccc}1 / 5 & 3 / 10 & -1 / 10 & 3 / 5 \\ -1 / 20 & 1 / 20 & 3 / 20 & -3 / 20 \\ 1 / 8 & -1 / 8 & 1 / 8 & -1 / 8\end{array}\right]$

- $A^{+} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

SVD Construction

■ SVD can be represented by $A=U D V^{*}$
\square or by $A=\sum_{i=1}^{r} s_{i} x_{i} y_{i}{ }^{*}$

SVD Construction

■ SVD can be represented by $A=U D V^{*}$
■ or by $A=\sum_{i=1}^{r} s_{i} x_{i} y_{i}{ }^{*}$
\square the pseudoinverse can be found by $A^{+}=V D^{+} U^{*}$
$■$ or $A^{+}=\sum_{i=1}^{r} s_{i}^{-1} y_{i} x_{i}^{*}$

SVD Example

Example

- $A=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ \sqrt{3} & 0\end{array}\right]$ then $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$

SVD Example

Example

- $A=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ \sqrt{3} & 0\end{array}\right]$ then $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$
- Solving for $D^{+}, D^{+}=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and
$A^{+}=\left[\begin{array}{ccc}.25 & 00.433012701892 \\ 0 & 1 & 0\end{array}\right]$
- $A^{+} A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Table of Contents

1 The Pseudoinverse
 ■ Generalized inverse
 - Moore-Penrose Inverse

2 Construction
■ QR Decomposition

- SVD

3 Application
■ Least Squares

Least Squares Review

- $A x=b$
- $x_{0}=A^{-1} b$

Least Squares Review

■ $A x=b$

- $x_{0}=A^{-1} b$

■ When A is singular, A^{-1} does not exist

Least Squares Review

■ $A x=b$

- $x_{0}=A^{-1} b$

■ When A is singular, A^{-1} does not exist
■ $x_{0}=A^{+} b=\left(A^{*} A\right)^{-1} A^{*} b=A^{+} b$
■ A has full column rank, $n>m$. A^{+}solves the least squares solution

Least Squares Review

■ $A x=b$

- $x_{0}=A^{-1} b$
- When A is singular, A^{-1} does not exist

■ $x_{0}=A^{+} b=\left(A^{*} A\right)^{-1} A^{*} b=A^{+} b$
■ A has full column rank, $n>m$. A^{+}solves the least squares solution
■ similarly $A^{+}=A^{*}\left(A A^{*}\right)^{-1}$ when A has full row rank.

Digital Image Restoration

■ Recovery of a degraded images

Digital Image Restoration

■ Recovery of a degraded images
■ Many algorithms are used for a variety of reasons

Digital Image Restoration

■ Recovery of a degraded images
■ Many algorithms are used for a variety of reasons
■ The Improvement in signal-to-noise ratio (ISNR) and required computational time compare algorithms

Digital Image Restoration

■ Recovery of a degraded images
■ Many algorithms are used for a variety of reasons
■ The Improvement in signal-to-noise ratio (ISNR) and required computational time compare algorithms
■ Moore-Penrose inverse is one of the most efficient algorithms

Digital Image Restoration Example

- $x_{\text {in }}=H^{+} x_{\text {out }}$

■ Where H is the matrix representation of how the image was degraded by a uniform linear motion

Digital Image Restoration

Original image

Degraded image

Digital Image Restoration

Generalized inverse reconstructed image

Lagrange reconstructed image

Digital Image Restoration

Table 1: ISNR and computational time results for 10 random matrices.

a	Ginv ISNR	Lagrange ISNR	Ginv computation time	Lagrange computation time
5	0.3534	0.3587	6.4210	9.2040
10	0.3485	0.3635	7.0780	10.0970
15	0.3484	0.3618	8.7940	10.6780
20	0.3475	0.3568	9.1990	11.6580
25	0.3457	0.3698	9.7760	12.0000
30	0.3537	0.3643	10.1810	12.5540
35	0.3546	0.3651	10.7710	12.5320
40	0.3524	0.3623	11.1230	13.1120
45	0.3642	0.3660	11.8990	14.3230
50	0.3559	0.3778	12.1400	14.9670

References

嗇 Applications of the Moore－Penrose Inverse in Digital Image Restoration
Spiros Chountasis，Vasilios N．Katsikis，and Dimitrios Pappas，
Mathematical Problems in Engineering，vol．2009，Article ID
170724
囯 Generalized Inverses：Theory and Applications Adi Ben－Israel，Thomas N．E．
Greville； 2001
䡒 Matrix Algebra：Theory，Computations，and Applications in
Statistics
James E．Gentle；
New York，NY：Springer， 2007.

