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What is the Generalized Inverse?

Any inverse-like matrix

Satisfies AA−A = A
Guaranteed existence, not uniqueness.

Example

ALA = A(LA) = AI = A
ARA = (AR)A = IA = A
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Defining the Pseudoinverse

Definition

If A ∈Mn×m, then there exists a unique A+ ∈Mm×n that
satisfies the four Penrose conditions:

1 AA+A = A
2 A+AA+ = A+

3 A+A = (A+A)∗ Hermitian
4 AA+ = (AA+)∗ Hermitian
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Generalized inverse
Moore-Penrose Inverse

Properties of the Pseudoinverse

Guaranteed existence and uniqueness

If A is nonsingular A+ = A−1

The pseudoinverse of the pseudoinverse is the original
matrix (A+)+ = A
(AB)+ = B+A+
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Generalized inverse
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Properties of the Pseudoinverse

For any A ∈ Cn×m there exists a A+ ∈ Cm×n

N(A∗) = N(A+) and R(A∗) = R(A+)

R(A)⊕ N(A+) = Cn and R(A+)⊕ N(A) = Cm

HH+ is an orthogonal projection onto R(A), and using
similar H+H is an orthogonal projection onto N(A).
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QR Decomposition

There are two ways of constructing the Pseudoinverse using
QR.

If A is n ×m and n > m with rank equal to m then

A = Q
[
R1
O

]

Then the pseudoinverse can be found by
A+ =

[
R−1

1 O∗]Q∗.

This only works if rank is equal to the minimum of m andn
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QR Decomposition

The second way finds the pseudoinverse for the singular case

If A is n × n and rank is less than n then A = Q
[
R1 0
0 0

]
U∗

Then the pseudoinverse can be found by Then the

pseudoinverse can be found by A+ = U
[
R−1

1 0
0 0

]
Q∗
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Example

Let A =


1 −1 4
1 4 −2
1 4 2
1 −1 0



Q =


1/2 −1/2 1/2
1/2 1/2 −1/2
1/2 1/2 1/2
1/2 −1/2 −1/2

R =


2 3 2
0 5 −2
0 0 4
0 0 0


R−1

1 =

1/2 −3/10 −2/5
0 1/5 1/10
0 0 1/4
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A+ =
[
R−1

1 O∗]Q∗

A+ =

 1/5 3/10 −1/10 3/5
−1/20 1/20 3/20 −3/20

1/8 −1/8 1/8 −1/8


A+A =

1 0 0
0 1 0
0 0 1
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SVD Construction

SVD can be represented by A = UDV ∗

or by A =
∑r

i=1 sixiyi
∗

the pseudoinverse can be found by A+ = VD+U∗

or A+ =
∑r

i=1 s−1
i yixi

∗
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Example

A =

 1 0
0 1√
3 0

 then D =

2 0
0 1
0 0



Solving for D+, D+ =

[
1/2 0 0
0 1 0

]
and

A+ =

[
.25 00.433012701892
0 1 0

]
A+A =

[
1 0
0 1

]
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Least Squares Review

Ax = b
x0 = A−1b

When A is singular, A−1 does not exist
x0 = A+b = (A∗A)−1A∗b = A+b
A has full column rank, n > m. A+ solves the least squares
solution
similarly A+ = A∗(AA∗)−1 when A has full row rank.
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Digital Image Restoration

Recovery of a degraded images

Many algorithms are used for a variety of reasons
The Improvement in signal-to-noise ratio (ISNR) and
required computational time compare algorithms
Moore-Penrose inverse is one of the most efficient
algorithms
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Digital Image Restoration Example

xin = H+xout

Where H is the matrix representation of how the image
was degraded by a uniform linear motion
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