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RGB Color Space

I Intensity and Representation

I Gamut mapping and Translation

I Absolute Color Spaces
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Lossy vs. Lossless Methods

I Lossless Methods - GIF / LZW

I Usefulness of Lossy Compression

I Limit - arithmetic, entropy, and LZW coding
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SVD

Definition

I A is a matrix with singular values
√
σ1,
√
σ2, . . . ,

√
σr ,

where r is the rank of A∗A and σi are eigenvalues of A

I Define V = [x1|x2| . . . |xn], U = [y1|y2| . . . |yn] where
{xi} is an orthonormal basis of eigenvectors for A∗A
and yi = 1√

σi
Axi
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SVD

I Additionally, si =
√
σi

I

S =



s1

s2 0
. . .

sr

0 0
. . .

0|0


I Thus,

AV = US

A = USV ∗
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SVD Truncated Form

I A =
r∑

i=1
sixiy

∗
i , where r is the rank of A∗A and the si

are ordered in decreasing magnitude, s1 ≥ s2 ≥ · · · ≥ sr
I For i < r , this neglects the lower weighted singular

values

I Discarding unnecessary singular values and the
corresponding columns of U and V decreases the
amount of storage necessary to reconstruct the image
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SVD Example
Sage

I Import image and convert to Sage matrix

I Perform SVD decomposition

I Choose number of singular values and reconstruct
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SVD Results

Cameraman, 256 elements Cameraman, 128 elements
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SVD Results

Cameraman, 64 elements Cameraman, 32 elements
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SVD Results

Cameraman, 16 elements Cameraman, 8 elements
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Principal Component Analysis

I Wide variety of applications in many fields:
I Principal moments and axes of inertia in physics
I Karhunen-Loeve Transform in signal processing
I Predictive analytics - customer behavior

I Statistical method for maximizing “variance” of a
variable; similar to SVD
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Statistics / Information Theory

I Variables with greater variance (higher entropy) carry
more information

I Maximizing variance maximizes the information density
carried by one variable

I Compress data via approximation, leaving off less
significant components

I Weighting - similar to SVD
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Statistics / Information Theory

I E (X ) =
∑

xip(xi ) = µ

I “Mean;” average outcome for a given scenario

I V (X ) = E [(X − µ)2]

I Expected deviation from the mean, µ

I Positive square root is standard deviation
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Statistics / Information Theory

I Cov(X ) or
∑

= E [(X − µ)T (X − µ)]

I µ is the vector of expected values µi = E (Xi )

I This matrix is positive semi-definite, which means its
eigenvalues will also be positive

I Cov(X ) is symmetric, therefore, diagonalizable

I Modal matrix M, composed of rows of eigenvectors for
Cov(X ), diagonalizes the covariance matrix
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Theorem (PCA Finds Principal Axes, via Hoggar[1])

I Let the orthonormal eigenvectors of Cov(X ), where
X = X1, . . . ,Xd , be R1, . . . ,Rd

I Let X have components (in the sense of projection)
{Yi}, where Y = Yi

I Then {Ri} is a set of principal axes for X
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Proof.

Yi = X · Ri = XRT
i

Y = XMT ,M = Rows(Ri ).

Because M diagonalizes Cov(X ), we can write:

Cov(Y ) = Cov(XMT ) = MCov(X )MT ,

which is a diagonal matrix of eigenvalues; V (Yi ) = λi .
If the Ri are the principal axes for X , then the Yi will be the
uncorrelated principal components, meaning the variance of
X · Ri is maximal.
For an arbitrary R, this is only true whenR = Ri , so {Ri} are
the principal axes for X .
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PCA Compression

I Given d vectors X , transform into k vectors Y , k < d

I Discard Yk+1 to Yd vectors with a minimal loss of data

I Blocks of 8× 8 pixels selected; turned into vectors of
length 82 = 64

I N vectors stacked as rows into a “class matrix” HN×64
after subtracting the mean

I Calculate modal matrix, then project data using as
many principal components as we like
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PCA Remarks

I Less stable than SVD

I Better for extremely large data sets

I Big data - consumer modeling
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Discrete Cosine Transform

Definition

The one-dimensional DCT can be written as follows, where
φk is a vector with components n, written as a variable to
avoid confusion with matrix notation

φk(n) =


√

2
N cos

(2n+1)kπ
2N , for n = 1, 2, . . . ,N − 1,√

1
N , for n = 0.
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DCT Properties

I A set of k vectors (each of dimension n) is orthonormal

I The matrix of columns M = [φ0|φ1| . . . |φN−1] is
invertible by its transpose

I 2D case: apply transformation first to rows, then to
columns (separable; composition of function along each
dimension)

I A matrix of values can be transformed via the
calculation B = MAMT
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JPEG File Format

I JPEG utilizes DCT

I Applying DCT moves information to lower indices
(vector or matrix)

I Higher index entries close to zero

I Lossy compression - quantization

I Settings - force the last n indices of a vector to zero

I For every 8× 8 submatrix, (8− n)2 coefficients out of
64 nonzero



Linear Methods for
Image

Compression

Aidan Meacham

Preliminaries

Color Spaces

Lossy vs. Lossless

Methods

SVD

PCA

DCT

JPEG Continued

I The transformed array undergoes zigzag reordering to
take advantage of zeroes in the larger indices

I

I This array is compressed via Huffman encoding (lossless
entropy-based algorithm)

I Huffman encoding utilizes a variable-length code table
to construct a frequency-sorted binary tree
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JPEG Remarks

I Only non-reversible step is quantization

I Reversing other steps (switching order of multiplication)
retrieves image

I Data lost no matter what - rounding errors

I DCT transforms frequencies, not intensities - human
eye sensitivity / recognition

I Blocky artifacts - natural vs. manufactured images
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DCT Example
Sage

I Import image and convert to Sage matrix

I Create DCT matrix

I Subdivide matrix and apply transform

I Quantize

I Reconstitute
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DCT Applied

Klein, 8 elements Klein, post-DCT
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DCT Results

Klein, 8 elements Klein, 5 elements
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DCT Results

Klein, 3 elements Klein, 1 element
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