Pivoting for LU Factorization

Matthew Reid

April 27, 2014

Table of Contents

(1) Introduction

- What is Pivoting for LU?
- Backward Stability
- Permutation Matrices
- LU Factorization
(2) Role of Pivoting
- Zero Pivots
- Small Pivots
(3) Pivoting Strategies
- Partial Pivoting
- Complete Pivoting
- Rook Pivoting

What is Pivoting for LU?

Pivoting for $L U$ factorization is the process of systematically selecting pivots for Gaussian elimination during the $L U$ factorization of a matrix.

Why do we pivot?

- Gaussian elimination is unstable
- Must guarantee no zero pivots

Backward Stability

Definition

An algorithm is stable for a class of matrices C if for every matrix $A \in C$, the computed solution by the algorithm is the exact solution to a nearby problem. Thus, for a linear system problem

$$
A \mathbf{x}=\mathbf{b}
$$

an algorithm is stable for a class of matrices C if for every $A \in C$ and for each \mathbf{b}, it produces a computed solution $\hat{\mathbf{x}}$ that satisfies

$$
(A+E) \hat{\mathbf{x}}=\mathbf{b}+\delta \mathbf{b}
$$

for some E and $\delta \mathbf{b}$, where $(A+E)$ is close to A and $\mathbf{b}+\delta \mathbf{b}$ is close to \mathbf{b}.

Permutation Matrices

- Left multiplication results in row swapping.

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{lll}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right]
$$

- We will denote these permutation matrices as P_{k} where k is the index of the elimination

Permutation Matrices

- Right multiplication results in column swapping.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
3 & 2 & 1 \\
6 & 5 & 4 \\
9 & 8 & 7
\end{array}\right]
$$

- We will denote these matrices as Q_{k}.

Permutation Matrices

- When computing $P A=L U$,

$$
P=P_{k} P_{k-1} \ldots P_{2} P_{1}
$$

- When computing $P A Q=L U$,

$$
Q=Q_{1} Q_{2} \ldots Q_{k-1} Q_{k}
$$

LU Factorization

- LU factorization in SCLA

$$
\begin{array}{cc}
{\left[\begin{array}{cccccccc}
-2 & 6 & -8 & 7 & 1 & 0 & 0 & 0 \\
-4 & 16 & -14 & 15 & 0 & 1 & 0 & 0 \\
-6 & 22 & -23 & 26 & 0 & 0 & 1 & 0 \\
-6 & 26 & -18 & 17 & 0 & 0 & 0 & 1
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{cccccccc}
-2 & 6 & -8 & 7 & 1 & 0 & 0 & 0 \\
0 & 4 & 2 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & -1 & 4 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 2 & -1 & -4 & 2 & 1
\end{array}\right]}
\end{array}
$$

LU Factorization

- We will use lower triangular elementary matrices, denoted as M_{k}, to eliminate entries of A
- Matrix products of permutation and elementary matrices will produce L and U

$$
M_{1} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 / 3 & 1 & 0 \\
-1 / 3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right]=\left[\begin{array}{ccc}
3 & 2 & 4 \\
0 & -1 / 3 & 1 / 3 \\
0 & 4 / 3 & 8 / 3
\end{array}\right]
$$

Zero Pivots

- The first cause of instability is the situation in which there is a zero in the pivot position

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right]
$$

- In this case we fail in the first step

Small Pivots

- Small pivots act simlarly to zero pivots

$$
\begin{gathered}
A=\left[\begin{array}{cc}
10^{-20} & 1 \\
1 & 2
\end{array}\right] \\
L=\left[\begin{array}{cc}
1 & 0 \\
10^{20} & 1
\end{array}\right], U=\left[\begin{array}{cc}
10^{-20} & 1 \\
0 & 2-10^{20}
\end{array}\right]
\end{gathered}
$$

Small Pivots

- The number $2-10^{20}$ is not represented exactly but will be rounded to the nearest floating point number which we will say is -10^{20}

$$
\begin{gathered}
L^{\prime}=\left[\begin{array}{cc}
1 & 0 \\
10^{20} & 1
\end{array}\right], U^{\prime}=\left[\begin{array}{cc}
10^{-20} & 1 \\
0 & -10^{20}
\end{array}\right] \\
L^{\prime} U^{\prime}=\left[\begin{array}{cc}
10^{-20} & 1 \\
1 & 0
\end{array}\right] \neq A
\end{gathered}
$$

Small Pivots

$$
\begin{gathered}
L^{\prime} U^{\prime} \hat{\mathbf{x}}=\mathbf{b} \\
\mathbf{b}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \hat{\mathbf{x}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
A \mathbf{x}=\mathbf{b} \\
\mathbf{x} \approx\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

Partial Pivoting

- $n \times n$ matrix
- $n-1$ permutations
- At step k of the elimination, we choose the largest of $n-(k+1)$ entries of column k as the pivot
- $O\left(n^{2}\right)$

Partial Pivoting
Complete Pivoting
Rook Pivoting

Partial Pivoting - Equations for L and U

- $M_{k}^{\prime}=\left(P_{n-1} \cdots P_{k+1}\right) M_{k}\left(P_{k+1} \cdots P_{n-1}\right)$
- $\left(M_{n-1}^{\prime} M_{n-2}^{\prime} \cdots M_{2}^{\prime} M_{1}^{\prime}\right)^{-1}=L$
- $M_{n-1} P_{n-1} M_{n-2} P_{n-2} \cdots M_{2} P_{2} M_{1} P_{1} A=U$

Partial Pivoting
Complete Pivoting
Rook Pivoting

Partial Pivoting

$$
\begin{aligned}
& B=\left[\begin{array}{cccc}
\mathbf{x} & x & x & x \\
\mathbf{x} & x & x & x \\
\gamma_{\mathbf{1}} & x & x & x \\
\mathbf{x} & x & x & x
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\gamma_{1} & x & x & x \\
0 & \mathbf{x} & x & x \\
0 & \mathbf{x} & x & x \\
0 & \gamma_{2} & x & x
\end{array}\right] \rightarrow \\
& {\left[\begin{array}{cccc}
\gamma_{1} & x & x & x \\
0 & \gamma_{2} & x & x \\
0 & 0 & \mathbf{x} & x \\
0 & 0 & \gamma_{3} & x
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\gamma_{1} & x & x & x \\
0 & \gamma_{2} & x & x \\
0 & 0 & \gamma_{3} & x \\
0 & 0 & 0 & x
\end{array}\right] }
\end{aligned}
$$

Partial Pivoting - Example

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 3 \\
3 & 2 & 4
\end{array}\right] \\
P_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], P_{1} A=\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right] \\
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 / 3 & 1 & 0 \\
-1 / 3 & 0 & 1
\end{array}\right], M_{1} P_{1} A=\left[\begin{array}{ccc}
3 & 2 & 4 \\
0 & -1 / 3 & 1 / 3 \\
0 & 4 / 3 & 8 / 3
\end{array}\right] \\
P_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], P_{2} M_{1} P_{1} A=\left[\begin{array}{ccc}
3 & 2 & 4 \\
0 & 4 / 3 & 8 / 3 \\
0 & -1 / 3 & 1 / 3
\end{array}\right]
\end{gathered}
$$

Partial Pivoting - Example

$$
\begin{gathered}
M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 4 & 1
\end{array}\right], M_{2} P_{2} M_{1} P_{1} A=U=\left[\begin{array}{ccc}
3 & 2 & 4 \\
0 & 4 / 3 & 8 / 3 \\
0 & 0 & 1
\end{array}\right] \\
L=\left(M_{2} P_{2} M_{1} P_{1}\right)^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 & 0 \\
2 / 3 & -1 / 4 & 1
\end{array}\right]
\end{gathered}
$$

Partial Pivoting - Example

$$
\begin{aligned}
P A & =\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 3 \\
3 & 2 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 & 0 \\
2 / 3 & -1 / 4 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 2 & 4 \\
0 & 4 / 3 & 8 / 3 \\
0 & 0 & 1
\end{array}\right] \\
& =L U
\end{aligned}
$$

Complete Pivoting

- $n \times n$ matrix
- At step k of the elimination, we scan for the largest value in the submatrix $A_{k: n, k: n}$ to use as the pivot
- $O\left(n^{3}\right)$

Complete Pivoting - Equations for L and U

- $M_{k}^{\prime}=\left(P_{n-1} \cdots P_{k+1}\right) M_{k}\left(P_{k+1} \cdots P_{n-1}\right)$
- $\left(M_{n-1}^{\prime} M_{n-2}^{\prime} \cdots M_{2}^{\prime} M_{1}^{\prime}\right)^{-1}=L$
- $M_{n-1} P_{n-1} M_{n-2} P_{n-2} \cdots M_{2} P_{2} M_{1} P_{1} A Q_{1} Q_{2} \cdots Q_{n-1}=U$

Complete Pivoting

$$
\begin{gathered}
B=\left[\begin{array}{cccc}
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \gamma_{1} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\gamma_{1} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
0 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
0 & \mathbf{x} & \mathbf{x} & \gamma_{2} \\
\mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x}
\end{array}\right] \rightarrow \\
\\
{\left[\begin{array}{ccccc}
\gamma_{1} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
0 & \gamma_{2} & \mathbf{x} & \mathrm{x} \\
0 & 0 & \mathbf{x} & \mathbf{x} \\
0 & 0 & \mathbf{x} & \gamma_{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\gamma_{1} & \mathbf{x} & x & x \\
0 & \gamma_{2} & x & x \\
0 & 0 & \gamma_{3} & x \\
0 & 0 & 0 & x
\end{array}\right]}
\end{gathered}
$$

Complete Pivoting - A Rank Revealing LU Factorization

- Complete pivoting is a rank revealing $L U$ factorization
- Suppose A is a $n \times n$ matrix such that $r(A)=r<n$. At the start of the $r+1$ elimination, the submatrix $A_{r+1: n, r+1: n}=0$
- After step r of the elimination, the algorithm can be terminated with the following factorization:

$$
P A Q=L U=\left[\begin{array}{cc}
L_{11} & 0 \\
L_{21} & I_{n-r}
\end{array}\right]\left[\begin{array}{cc}
U_{11} & U_{12} \\
0 & 0
\end{array}\right]
$$

Complete Pivoting - Rank Revealing LU Example

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12 \\
5 & 1 & 2 & 9
\end{array}\right]
$$

- $r(A)=2$
- At step 2 of the elimination, we get the following factors:

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 / 4 & 1 & 0 & 0 \\
1 / 3 & 0 & 1 & 0 \\
2 / 3 & 0 & 0 & 1
\end{array}\right], U=\left[\begin{array}{cccc}
12 & 9 & 6 & 3 \\
0 & \frac{-19}{4} & \frac{-7}{2} & \frac{11}{4} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Rook Pivoting

- $n \times n$ matrix
- At step k of the elimination, we scan the submarix $A_{k: n, k: n}$ for values that are the largest in their respective row and column to use as pivots
- As fast as partial pivoting and as reliable as complete pivoting

Rook Pivoting

$$
\begin{aligned}
B= & {\left[\begin{array}{llll}
\mathbf{x} & \mathbf{x} & \mathbf{x} & \gamma \\
\mathbf{x} & \gamma & \mathbf{x} & \mathbf{x} \\
\gamma & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \gamma & \mathbf{x}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\gamma_{1} & x & x & x \\
0 & \mathbf{x} & \gamma & \mathbf{x} \\
0 & \gamma & \mathbf{x} & \mathbf{x} \\
0 & \mathbf{x} & \mathbf{x} & \gamma
\end{array}\right] \rightarrow } \\
& {\left[\begin{array}{cccc}
\gamma_{1} & x & x & x \\
0 & \gamma_{2} & x & x \\
0 & 0 & \mathbf{x} & \gamma \\
0 & 0 & \gamma & \mathbf{x}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\gamma_{1} & x & x & x \\
0 & \gamma_{2} & x & x \\
0 & 0 & \gamma_{3} & x \\
0 & 0 & 0 & x
\end{array}\right] }
\end{aligned}
$$

Rook Pivoting

$$
A=\left[\begin{array}{cccccc}
2 & 10 & 1 & 2 & 4 & 5 \\
1 & 5 & 2 & 3 & 5 & 6 \\
3 & 0 & 3 & 1 & 4 & 1 \\
2 & 2 & 14 & 2 & 1 & 0 \\
0 & 9 & 5 & 6 & 3 & 8 \\
1 & 13 & 3 & 4 & 0 & 1
\end{array}\right]
$$

References

- Biswa Biswa Nath Datta Numerical Linear Algebra and Applications, Second Edition 2010: Society for Industrial and Applied Mathmatics (SIAM).
- Gene H. Golub and Charles F. Van Loan Matrix Computations 4th Edition 2013: The John Hopkins University Press.
- James E. Gentle Matrix Algebra: Theory, Computations, and Applications in Statistics 2007: Springer Science + Business Media, LLC.
- Leslie Hogben Handbook of Linear Algebra 2007: Taylor and Francis Group, LLC.
- Lloyd N. Trefethen and David Bau, III Numerical Linear Algebra 1997: Society for Industrial and Applied Mathmatics (SIAM).

References

- Nicholas J. Higman Accuracy and Stability of Numerical Algorithms, Second Edition 2002: Society for Industrial and Applied Mathmatics (SIAM).
- Nicholas J. Higman "Gaussian Elimination"; http://www.maths.manchester.ac.uk/ higham/papers /high11g.pdf 2011: John Wiley and Sons, Inc.
- Phillip Gill, Walter Murray, and Margaret H. Wright Numerical Linear Algebra and Optimization Volume 1 1991: Addison-Wesley Publishing Company.
- Robert Beezer A Second Course in Linear Algebra 2013.
- Xiao-Wen Chang Some Features of Gaussian Elimination with Rook Pivoting 2002: School of Computer Science, McGill University.

