Pivoting for LU Factorization

Matthew Reid

April 27, 2014

Matthew Reid Pivoting for LU Factorization

Image: A = A

Table of Contents

1 Introduction

- What is Pivoting for LU?
- Backward Stability
- Permutation Matrices
- LU Factorization

2 Role of Pivoting

- Zero Pivots
- Small Pivots

O Pivoting Strategies

- Partial Pivoting
- Complete Pivoting
- Rook Pivoting

What is Pivoting for LU? Backward Stability Permutation Matrices LU Factorization

What is Pivoting for LU?

Pivoting for LU factorization is the process of systematically selecting pivots for Gaussian elimination during the LU factorization of a matrix.

Why do we pivot?

- Gaussian elimination is unstable
- Must guarantee no zero pivots

Image: A matrix

What is Pivoting for LU? Backward Stability Permutation Matrices LU Factorization

Backward Stability

Definition

An algorithm is stable for a class of matrices C if for every matrix $A \in C$, the computed solution by the algorithm is the exact solution to a nearby problem. Thus, for a linear system problem

$A\mathbf{x} = \mathbf{b}$

an algorithm is stable for a class of matrices C if for every $A \in C$ and for each **b**, it produces a computed solution $\hat{\mathbf{x}}$ that satisfies

$$(A+E)\hat{\mathbf{x}} = \mathbf{b} + \delta\mathbf{b}$$

for some *E* and $\delta \mathbf{b}$, where (A + E) is close to *A* and $\mathbf{b} + \delta \mathbf{b}$ is close to **b**.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

What is Pivoting for LU? Backward Stability Permutation Matrices LU Factorization

Permutation Matrices

• Left multiplication results in row swapping.

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

• We will denote these permutation matrices as P_k where k is the index of the elimination

< □ > < 同 >

What is Pivoting for LU? Backward Stability Permutation Matrices LU Factorization

Permutation Matrices

• Right multiplication results in column swapping.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ 9 & 8 & 7 \end{bmatrix}$$

• We will denote these matrices as Q_k .

<ロト < 同ト < 三ト

What is Pivoting for LU? Backward Stability Permutation Matrices LU Factorization

Permutation Matrices

• When computing PA = LU,

$$P = P_k P_{k-1} \dots P_2 P_1$$

• When computing
$$PAQ = LU$$
,

$$Q = Q_1 Q_2 \dots Q_{k-1} Q_k$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

What is Pivoting for LU? Backward Stability Permutation Matrices LU Factorization

LU Factorization

・ロト ・得ト ・ヨト ・ヨト

What is Pivoting for LU Backward Stability Permutation Matrices LU Factorization

LU Factorization

- We will use lower triangular elementary matrices, denoted as M_k , to eliminate entries of A
- Matrix products of permutation and elementary matrices will produce *L* and *U*

$$M_1 A = \begin{bmatrix} 1 & 0 & 0 \\ -2/3 & 1 & 0 \\ -1/3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 4 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 4 \\ 0 & -1/3 & 1/3 \\ 0 & 4/3 & 8/3 \end{bmatrix}$$

(日) (同) (三) (三)

Zero Pivots Small Pivots

Zero Pivots

• The first cause of instability is the situation in which there is a zero in the pivot position

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$

• In this case we fail in the first step

< □ > < 同 >

★ ∃ →

Zero Pivots Small Pivots

Small Pivots

• Small pivots act simlarly to zero pivots

$$A = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 2 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix}, \ U = \begin{bmatrix} 10^{-20} & 1 \\ 0 & 2 - 10^{20} \end{bmatrix}$$

э

(日) (同) (三) (三)

Zero Pivots Small Pivots

Small Pivots

• The number $2-10^{20}$ is not represented exactly but will be rounded to the nearest floating point number which we will say is -10^{20}

$$L' = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix}, U' = \begin{bmatrix} 10^{-20} & 1 \\ 0 & -10^{20} \end{bmatrix}$$
$$L'U' = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 0 \end{bmatrix} \neq A$$

< ロ > < 同 > < 三 > <

Zero Pivots Small Pivots

Small Pivots

$$L'U'\hat{\mathbf{x}} = \mathbf{b}$$
$$\mathbf{b} = \begin{bmatrix} 1\\3 \end{bmatrix}, \ \hat{\mathbf{x}} = \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$A\mathbf{x} = \mathbf{b}$$
$$\mathbf{x} \approx \begin{bmatrix} 1\\1 \end{bmatrix}$$

Partial Pivoting Complete Pivoting Rook Pivoting

Partial Pivoting

- $n \times n$ matrix
- n − 1 permutations
- At step k of the elimination, we choose the largest of n (k + 1) entries of column k as the pivot
- $O(n^2)$

(日) (同) (三) (三)

Partial Pivoting Complete Pivoting Rook Pivoting

Partial Pivoting - Equations for L and U

- $M'_k = (P_{n-1} \cdots P_{k+1})M_k(P_{k+1} \cdots P_{n-1})$
- $(M'_{n-1}M'_{n-2}\cdots M'_2M'_1)^{-1} = L$
- $M_{n-1}P_{n-1}M_{n-2}P_{n-2}\cdots M_2P_2M_1P_1A = U$

Partial Pivoting Complete Pivoting Rook Pivoting

Partial Pivoting

$$B = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{\gamma}_{1} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_{1} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{\gamma}_{2} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{\gamma}_{2} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{\gamma}_{3} & \mathbf{x} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_{1} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \gamma_{2} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \gamma_{3} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} \end{bmatrix}$$

<ロ> <同> <同> < 回> < 回>

Partial Pivoting Complete Pivoting Rook Pivoting

Partial Pivoting - Example

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{bmatrix}$$
$$P_{1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, P_{1}A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
$$M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -2/3 & 1 & 0 \\ -1/3 & 0 & 1 \end{bmatrix}, M_{1}P_{1}A = \begin{bmatrix} 3 & 2 & 4 \\ 0 & -1/3 & 1/3 \\ 0 & 4/3 & 8/3 \end{bmatrix}$$
$$P_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, P_{2}M_{1}P_{1}A = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 4/3 & 8/3 \\ 0 & -1/3 & 1/3 \end{bmatrix}$$

<ロ> <同> <同> < 回> < 回>

Partial Pivoting Complete Pivoting Rook Pivoting

Partial Pivoting - Example

$$M_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/4 & 1 \end{bmatrix}, M_{2}P_{2}M_{1}P_{1}A = U = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 4/3 & 8/3 \\ 0 & 0 & 1 \end{bmatrix}$$
$$L = (M_{2}P_{2}M_{1}P_{1})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1 & 0 \\ 2/3 & -1/4 & 1 \end{bmatrix}$$

<ロ> <同> <同> < 回> < 回>

Partial Pivoting Complete Pivoting Rook Pivoting

Partial Pivoting - Example

$$PA = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1 & 0 \\ 2/3 & -1/4 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 4 \\ 0 & 4/3 & 8/3 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= LU$$

<ロ> <同> <同> < 回> < 回>

Partial Pivoting Complete Pivoting Rook Pivoting

Complete Pivoting

- $n \times n$ matrix
- At step k of the elimination, we scan for the largest value in the submatrix $A_{k:n,k:n}$ to use as the pivot
- $O(n^3)$

Partial Pivoting Complete Pivoting Rook Pivoting

Complete Pivoting - Equations for L and U

- $M'_k = (P_{n-1} \cdots P_{k+1})M_k(P_{k+1} \cdots P_{n-1})$
- $(M'_{n-1}M'_{n-2}\cdots M'_2M'_1)^{-1} = L$
- $M_{n-1}P_{n-1}M_{n-2}P_{n-2}\cdots M_2P_2M_1P_1AQ_1Q_2\cdots Q_{n-1} = U$

Partial Pivoting Complete Pivoting Rook Pivoting

Complete Pivoting

$$B = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{\gamma_1} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_1 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_1 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \gamma_2 & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{\gamma_3} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_1 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \gamma_2 & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{y_3} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_1 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \gamma_2 & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{y_3} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} \end{bmatrix}$$

<ロ> <同> <同> < 回> < 回>

Complete Pivoting - A Rank Revealing LU Factorization

- Complete pivoting is a rank revealing LU factorization
- Suppose A is a n × n matrix such that r(A) = r < n. At the start of the r + 1 elimination, the submatrix A_{r+1:n,r+1:n} = 0
- After step *r* of the elimination, the algorithm can be terminated with the following factorization:

$$PAQ = LU = \begin{bmatrix} L_{11} & 0\\ L_{21} & I_{n-r} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12}\\ 0 & 0 \end{bmatrix}$$

Partial Pivoting Complete Pivoting Rook Pivoting

Complete Pivoting - Rank Revealing LU Example

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 5 & 1 & 2 & 9 \end{bmatrix}$$

•
$$r(A) = 2$$

• At step 2 of the elimination, we get the following factors:

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3/4 & 1 & 0 & 0 \\ 1/3 & 0 & 1 & 0 \\ 2/3 & 0 & 0 & 1 \end{bmatrix}, \ U = \begin{bmatrix} 12 & 9 & 6 & 3 \\ 0 & \frac{-19}{4} & \frac{-7}{2} & \frac{11}{4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(日) (同) (三) (三)

Partial Pivoting Complete Pivoting Rook Pivoting

Rook Pivoting

- $n \times n$ matrix
- At step k of the elimination, we scan the submarix $A_{k:n,k:n}$ for values that are the largest in their respective row and column to use as pivots
- As fast as partial pivoting and as reliable as complete pivoting

<ロト < 同ト < 三ト

Partial Pivoting Complete Pivoting Rook Pivoting

Rook Pivoting

$$B = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{\gamma} \\ \mathbf{x} & \mathbf{\gamma} & \mathbf{x} & \mathbf{x} \\ \mathbf{\gamma} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{\gamma} & \mathbf{x} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_1 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \mathbf{\gamma} & \mathbf{x} \\ \mathbf{0} & \mathbf{\gamma} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{\gamma} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{\gamma} \\ \mathbf{0} & \mathbf{0} & \mathbf{\gamma} & \mathbf{x} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_1 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \gamma_2 & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{\gamma} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{\gamma} & \mathbf{x} \end{bmatrix} \rightarrow \begin{bmatrix} \gamma_1 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \gamma_2 & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{\gamma} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} \end{bmatrix}$$

<ロ> <同> <同> < 回> < 回>

Partial Pivoting Complete Pivoting Rook Pivoting

Rook Pivoting

$$A = \begin{bmatrix} 2 & 10 & 1 & 2 & 4 & 5 \\ 1 & 5 & 2 & 3 & 5 & 6 \\ 3 & 0 & 3 & 1 & 4 & 1 \\ 2 & 2 & 14 & 2 & 1 & 0 \\ 0 & 9 & 5 & 6 & 3 & 8 \\ 1 & 13 & 3 & 4 & 0 & 1 \end{bmatrix}$$

Matthew Reid Pivoting for LU Factorization

<ロ> <同> <同> < 回> < 回>

Partial Pivoting Complete Pivoting Rook Pivoting

References

- Biswa Biswa Nath Datta *Numerical Linear Algebra and Applications, Second Edition* 2010: Society for Industrial and Applied Mathmatics (SIAM).
- Gene H. Golub and Charles F. Van Loan *Matrix Computations* 4th Edition 2013: The John Hopkins University Press.
- James E. Gentle *Matrix Algebra: Theory, Computations, and Applications in Statistics* 2007: Springer Science + Business Media, LLC.
- Leslie Hogben *Handbook of Linear Algebra* 2007: Taylor and Francis Group, LLC.
- Lloyd N. Trefethen and David Bau, III *Numerical Linear Algebra* 1997: Society for Industrial and Applied Mathmatics (SIAM).

(日) (同) (日) (日) (日)

Partial Pivoting Complete Pivoting Rook Pivoting

References

- Nicholas J. Higman *Accuracy and Stability of Numerical Algorithms, Second Edition* 2002: Society for Industrial and Applied Mathmatics (SIAM).
- Nicholas J. Higman "Gaussian Elimination"; http://www.maths.manchester.ac.uk/ higham/papers /high11g.pdf 2011: John Wiley and Sons, Inc.
- Phillip Gill, Walter Murray, and Margaret H. Wright Numerical Linear Algebra and Optimization Volume 1 1991: Addison-Wesley Publishing Company.
- Robert Beezer A Second Course in Linear Algebra 2013.
- Xiao-Wen Chang *Some Features of Gaussian Elimination with Rook Pivoting* 2002: School of Computer Science, McGill University.

・ロト ・同ト ・ヨト ・ヨト