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1 Introduction

Pivoting for LU factorization is the process of systematically selecting pivots for Gaussian elimina-
tion during the LU factorization of a matrix. The LU factorization is closely related to Gaussian
elimination, which is unstable in its pure form. To guarantee the elimination process goes to com-
pletion, we must ensure that there is a nonzero pivot at every step of the elimination process. This
is the reason we need pivoting when computing LU factorizations. But we can do more with piv-
oting than just making sure Gaussian elimination completes. We can reduce roundoff errors during
computation and make our algorithm backward stable by implementing the right pivoting strategy.
Depending on the matrix A, some LU decompositions can become numerically unstable if relatively
small pivots are used. Relatively small pivots cause instability because they operate very similar
to zeros during Gaussian elimination. Through the process of pivoting, we can greatly reduce this
instability by ensuring that we use relatively large entries as our pivot elements. This prevents large
factors from appearing in the computed L and U , which reduces roundoff errors during computa-
tion. The three pivoting strategies I am going to discuss are partial pivoting, complete pivoting,
and rook pivoting, along with an explanation of the benefits obtained from using each strategy.

2 Permutation Matrices

The process of swapping rows and columns is crucial to pivoting. Permutation matrices are used
to achieve this. A permutation matrix is the identity matrix with interchanged rows. When these
matrices multiply another matrix they swap the rows or columns of the matrix. Left multiplication
by a permutation matrix will result in the swapping of rows while right multiplication will swap
columns. For example, in order to swap rows 1 and 3 of a matrix A, we right multiply by a permu-
tation matrix P , which is the identity matrix with rows 1 and 3 swapped. To interchange columns
1 and 3 of the matrix A, we left multiply by the same permutation matrix P . At each step k of
Gaussian elimination we encounter an optional row interchange, represented by Pk, before eliminat-
ing entries via the lower triangular elementary matrix Mk. If there is no row interchange required,
Pk is simply the identity matrix. Think of this optional row interchange as switching the order of
the equations when presented with a system of equations. For Gaussian elimination to terminate
successfully, this process is necessary when encountering a zero pivot. When describing the different
pivoting strategies, I will denote a permutation matrix that swaps rows with Pk and will denote a
permutation matrix that swaps columns by refering to the matrix as Qk. When computing the LU
factorizations of matrices, we will routinely pack the permutation matrices together into a single
permutation matrix. They are simply a matrix product of all the permutation matrices used to
achieve the factorization. I will define these matrices here.

When computing PA = LU ,

P = PkPk−1...P2P1 (1)

where k is the index of the elimination.

When computing PAQ = LU ,

Q = Q1Q2...Qk−1Qk (2)
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where k is the index of the elimination.

3 Role of Pivoting

The role of pivoting is to reduce instability that is inherent in Gaussian elimination. Instability
arises only if the factor L or U is relatively large in size compared to A. Pivoting reduces instablilty
by ensuring that L and U are not too big relative to A. By keeping all of the intermediate quantites
that appear in the elimination process a managable size, we can minimize rounding errors. As a
consequence of pivoting, the algorithm for computing the LU factorization is backward stable. I
will define backward stability in the upcoming paragraphs.

3.1 Zero Pivots

The first cause of instability is the situation in which there is a zero in the pivot position. With a
zero as a pivot element, the calculation cannot be completed because we encounter the error of di-
vision by zero. In this case, pivoting is essential to finishing the computation. Consider the matrix A.

A =

[
0 1
1 2

]
When trying to compute the factors L and U , we fail in the first elimination step because of

division by zero.

3.2 Small Pivots

Another cause of instability in Gaussian elimination is when encountering relatively small pivots.
Gaussian elimination is guaranteed to succeed if row or column interchanges are used in order to
avoid zero pivots when using exact calculations. But, when computing the LU factorization numer-
ically, this is not necessarily true. When a calculation is undefined because of division by zero, the
same calculation will suffer numerical difficulties when there is division by a nonzero number that
is relatively small.

A =

[
10−20 1

1 2

]
When computing the factors L and U , the process does not fail in this case because there is no

division by zero.

L =

[
1 0

1020 1

]
, U =

[
10−20 1

0 2− 10−20

]
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When these computations are performed in floating point arithmetic, the number 2 − 10−20 is
not represented exactly but will be rounded to the nearest floating point number which we will say
is −10−20. This means that our matrices are now floating point matrices L′ and U ′.

L′ =

[
1 0

1020 1

]
, U ′ =

[
10−20 1

0 −1020

]
The small change we made in U to get U ′ shows its significance when we compute L′U ′.

L′U ′ =

[
10−20 1

1 0

]
The matrix L′U ′ should be equal to A, but obviously that is not the case. The 2 in position

(2, 2) of matrix A is now 0. Also, when trying to solve a system such as Ax = b using the LU
factorization, the factors L′U ′ would not give you a correct answer. The LU factorization was a
stable computation but not backward stable.

Many times we compute LU factorizations in order to solve systems of equations. In that case,
we want to find a solution to the vector equation Ax = b, where A is the coefficient matrix of
interest and b is the vector of constants. Therefore, for solving this vector equation specifically, the
definition of backward stability is as follows.

Definition 3.1. An algorithm is stable for a class of matrices C if for every matrix A ∈ C, the
computed solution by the algorithm is the exact solution to a nearby problem. Thus, for a linear
system problem

Ax = b

an algorithm is stable for a class of matrices C if for every A ∈ C and for each b, it produces a
computed solution x̂ that satisfies

(A+ E)x̂ = b + δb

for some E and δb, where (A+ E) is close to A and b + δb is close to b.

The LU factorization without pivoting is not backward stable because the computed solution x̂
for the problem L′U ′x̂ = b is not the exact solution to a nearby problem Ax = b. The computed

solution to L′U ′x̂ = b, with b =

[
1
3

]
, is x̂ =

[
0
1

]
. Yet the correct solution is x ≈

[
1
1

]
.
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4 Partial Pivoting

The goal of partial pivoting is to use a permutation matrix to place the largest entry of the first
column of the matrix at the top of that first column. For an n×n matrix B, we scan n rows of the
first column for the largest value. At step k of the elimination, the pivot we choose is the largest of
the n− (k + 1) subdiagonal entries of column k, which costs O(nk) operations for each step of the
elimination. So for a n×n matrix, there is a total of O(n2) comparisons. Once located, this entry is
then moved into the pivot position Akk on the diagonal of the matrix. So in the first step the entry
is moved into the (1,1) position of matrix B. We interchange rows by multiplying B on the left
with a permutation matrix P . After we multiply matrix B by P we continue the LU factorization
and use our new pivot to clear out the entries below it in its column in order to obtain the upper
triangular matrix U . The general factorization of a n × n matrix A to a lower triangular matrix
L and an upper triangular matrix U using partial pivoting is represented by the following equations.

M ′
k = (Pn−1 · · ·Pk+1)Mk(Pk+1 · · ·Pn−1) (3)

(Mn−1Mn−2 · · ·M2M1)
−1 = L (4)

Mn−1Pn−1Mn−2Pn−2 · · ·M2P2M1P1A = U (5)

In order to get a visual sense of how pivots are selected, let γ represent the largest value in the
matrix B and the bold represent entries of the matrix being scanned as potential pivots.

B =


x x x x
x x x x
γ1 x x x
x x x x

→

γ1 x x x
0 x x x
0 x x x
0 γ2 x x

→

γ1 x x x
0 γ2 x x
0 0 x x
0 0 γ3 x

→

γ1 x x x
0 γ2 x x
0 0 γ3 x
0 0 0 x


After n − 1 permutations, the last permutation becomes trivial as the column of interest has

only a single entry. As a numerical example, consider the matrix A.

A =

1 2 4
2 1 3
3 2 4


In this case, we want to use a permutation matrix to place the largest entry of the first column

into the position A11. For this matrix, this means we want 3 to be the first entry of the first column.
So we use the permutation matrix P1,

P1 =

0 0 1
0 1 0
1 0 0

, P1A =

3 2 4
2 1 3
1 2 4
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Then we use the matrix M1 to eliminate the bottom two entries of the first column.

M1 =

 1 0 0
−2/3 1 0
−1/3 0 1

, M1P1A =

3 2 4
0 −1/3 1/3
0 4/3 8/3


Then, we use the permutation matrix P2 to move the larger of the bottom two entries in column

two of A into the position a22.

P2 =

1 0 0
0 0 1
0 1 0

, P2M1P1A =

3 2 4
0 4/3 8/3
0 −1/3 1/3


As we did before, we are going to use matrix multiplication to eliminate entries at the bottom

of column 2. We use matrix M2 to achieve this.

M2 =

1 0 0
0 1 0
0 1/4 1

, M2P2M1P1A =

3 2 4
0 4/3 8/3
0 0 1


This upper triangular matrix product is our U matrix. The L matrix comes from the matrix

product (M2P2M1P1)
−1.

L = (M2P2M1P1)
−1 =

 1 0 0
1/3 1 0
2/3 −1/4 1


To check, we can show that PA = LU , where P = P2P1.

PA =

0 0 1
1 0 0
0 1 0

1 2 4
2 1 3
3 2 4

 =

 1 0 0
1/3 1 0
2/3 −1/4 1

3 2 4
0 4/3 8/3
0 0 1

 = LU

Through the process of partial pivoting, we get the smallest possible quantites for the elimination
process. As a consequence, we will have no quantity larger than 1 in magnitude which minimizes
the chance of large errors. Partial pivoting is the most commmon method of pivoting as it is the
fastest and least costly of all the pivoting methods.

5 Complete Pivoting

When employing the complete pivoting strategy we scan for the largest value in the entire subma-
trix Ak:n,k:n, where k is the number of the elimination, instead of just the next subcolumn. This
requires O(n − k)2 comparisons for every step in the elimination to find the pivot. The total cost
becomes O(n3) comparisons for an n × n matrix. For an n × n matrix A, the first step is to scan
n rows and n columns for the largest value. Once located, this entry is then permuted into the
next diagonal pivot position of the matrix. So in the first step the entry is permuted into the (1, 1)
position of matrix A. We interchange rows exactly as we did in partial pivoting, by multiplying
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A on the left with a permutation matrix P . Then to interchange columns, we multiply A on the
right by another permutation matrix Q. The matrix product PAQ interchanges rows and columns
accordingly so that the largest entry in the matrix is in the (1,1) position of A. With complete
pivoting, the general equation for L is the same as for partial pivoting (equation 3 and 4), but the
equation for U changes slightly.

Mn−1Pn−1Mn−2Pn−2 · · ·M2P2M1P1AQ1Q2 · · ·Qn−1 = U (6)

Once again, let γ represent the largest value in the matrix B and the bold represent entries of
the matrix being scanned.

B =


x x x x
x x x x
x x γ1 x
x x x x

→

γ1 x x x
0 x x x
0 x x γ2

0 x x x

→

γ1 x x x
0 γ2 x x
0 0 x x
0 0 x γ3

→

γ1 x x x
0 γ2 x x
0 0 γ3 x
0 0 0 x


After n− 1 permutations, the last permutation becomes trivial as the submatrix of interest is a

1 × 1 matrix. For a numerical example, consider the matrix A.

A =

2 3 4
4 7 5
4 9 5


In this case, we want to use two different permutation matrices to place the largest entry of the

entire matrix into the position A11. For this matrix, this means we want 9 to be the first entry
of the first column. To achieve this we multiply A on the left by the permutation matrix P1 and
multiply on the right by the permutation matrix Q1.

P1 =

0 0 1
0 1 0
1 0 0

, Q1 =

0 1 0
1 0 0
0 0 1

P1AQ1 =

3 2 4
2 1 3
1 2 4


Then in computing the LU factorization, the matrix M1 is used to eliminate the bottom two

entries of the first column.

M1 =

 1 0 0
−7/9 1 0
−1/3 0 1

, M1P1AQ1 =

9 4 5
0 8/9 10/9
0 2/3 7/3


Then, the permutation matrices P2 and Q2 are used to move the largest entry of the submatrix

A2:3;2:3 into the position A22.

P2 =

1 0 0
0 0 1
0 1 0

 , Q2 =

1 0 0
0 0 1
0 1 0

, P2M1P1AQ1Q2 =

9 5 4
0 7/3 2/3
0 10/9 8/9
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As we did before, we are going to use matrix multiplication to eliminate entries at the bottom
of the column 2. We use matrix M2 to achieve this,

M2 =

1 0 0
0 1 0
0 −10/21 1

, M2P2M1P1AQ1Q2 =

3 2 4
0 7/3 2/3
0 0 4/7


This upper triangular matrix product is the U matrix. The L matrix comes from the inverse of

the product of M and P matrices.

L = (M2P2M1P1)
−1 =

 1 0 0
1/3 1 0
7/9 10/21 1


To check, we can show that PAQ = LU , where P = P2P1 and Q = Q1Q2.

PAQ =

0 0 1
1 0 0
0 1 0

1 2 4
2 1 3
3 2 4

0 0 1
1 0 0
0 1 0

 =

 1 0 0
1/3 1 0
7/9 10/21 1

9 5 4
0 7/3 2/3
0 0 4/7

 = LU

Complete pivoting requires both row and column interchanges. In theory, complete pivoting is
more reliable than partial pivoting because you can use it with singular matrices. When a matrix is
rank deficient complete pivoting can be used to reveal the rank of the matrix. Suppose A is a n×n
matrix such that r(A) = r < n. At the start of the r+1 elimination, the submatrix Ar+1:n,r+1:n = 0.
This means that for the remaining elimination steps, Pk = Qk = Mk = I for r + 1 ≤ k ≤ n. So
after step r of the elimination, the algorithm can be terminated with the following factorization.

PAQ = LU =

[
L11 0
L21 In−r

] [
U11 U12

0 0

]
In this case, L11 and U11 have size r×r and L21 and UT

12 have size (n−r)×r. Complete pivoting
works in this case because we are able to identify that every entry of the submatrix Ar+1:n,r+1:n is
0. This would not work with partial pivoting because partial pivoting only searches a single column
for a pivot and would fail before recognizing that all remaining potential pivots were zero. But
in practice, we know that encountering a rank deficient matrix in numerical linear algebra is very
rare. This is the reason complete pivoting does not consistently produce more accurate results than
partial pivoting. Therefore, partial pivoting is usually the best pivoting strategy of the two.

6 Rook Pivoting

Rook pivoting is a third alternative pivoting strategy. For this strategy, in the kth step of the
elimination, where 1 ≤ k ≤ n − 1 for a n × n matrix A, we scan the submarix Ak:n,k:n for values
that are the largest in their respective row and column. Once we have found our potential pivots,
we are free to choose any that we please. This is because the identified potential pivots are large
enough so that there will be a very minimal difference in the end factors, no matter which pivot is
chosen. When a computer uses rook pivoting, it searches only for the first entry that is the largest
in its respective row and column. The computer chooses the first one it finds because even if there
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are more, they all will be equally effective as pivots. This allows for some options in our decision
making with regards to the pivot we want to use. Rook pivoting is the best of both worlds in that
it costs the same amount of time as partial pivoting while it has the same reliability as complete
pivoting.

B =


x x x γ
x γ x x
γ x x x
x x γ x

→

γ1 x x x
0 x γ x
0 γ x x
0 x x γ

→

γ1 x x x
0 γ2 x x
0 0 x γ
0 0 γ x

→

γ1 x x x
0 γ2 x x
0 0 γ3 x
0 0 0 x


For a numerical example, consider the matrix A.

A =

1 4 7
7 8 2
9 5 1


When using the partial pivoting technique, we would identify 8 as our first pivot element. When

using complete pivoting, we would use 9 as our first pivot element. When rook pivoting we identify
entries that are the largest in their respective rows and columns. So following this logic, we identify
8, 9, and 7 all as potential pivots. In this example we will choose 7 as the first pivot. Since we are
choosing 7 for our first pivot element, we multiply A on the right by the permutation matrix Q1

to move 7 into the position A11. Note that we will also multiply on the left of A by P1, but P1 is
simply the identity matrix so there will be no effect on A.

Q1 =

0 0 1
0 1 0
1 0 0

, P1AQ1 =

7 4 1
2 8 7
1 5 9


Then we eliminate the entries in row 2 and 3 of column 1 via the matrix M1.

M1 =

 1 0 0
−2/7 1 0
−1/7 0 1

, M1P1AQ1 =

7 4 1
0 48/7 47/7
0 30/7 62/7


If we were employing partial pivoting, our pivot would be 48

7
and if we were using complete

pivoting, our pivot would be 62
7

. But using the rook pivoting strategy allows us to choose either
48
7

or 62
7

as our next pivot. In this situation, we do not need to permute the matrix M1P1AQ1 to
continue with our factorization because one of our potential pivots is already in pivot postion. To
keep things interesting, we will permute the matrix anyway and choose 62

7
to be our next pivot. To

achieve this we wil multiply by the matrix P2 on the left and by the matrix Q2 on the right.

P2 =

1 0 0
0 0 1
0 1 0

, Q2 =

1 0 0
0 0 1
0 1 0

, P2M1P1AQ1Q2 =

7 1 4
0 62/7 30/7
0 47/7 48/7
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At this point, we want to eliminate the last entry of the second column to complete the factor-
ization. We achieve this by matrix M2.

M2 =

1 0 0
0 1 0
0 −47/62 1

, M2P2M1P1AQ1Q2 =

7 1 4
0 62/7 30/7
0 0 7/2


After the elimination the matrix is now upper triangular which we recognize as the factor U . The

factor L is equal to the matrix product (L2Q2L1Q2)
−1. You can use Sage to check that PAQ = LU ,

where P = P2P1 and Q = Q1Q2.

PAQ =

1 0 0
0 0 1
0 1 0

1 4 7
7 8 2
9 5 1

0 1 0
0 0 1
1 0 0

 =

 1 0 0
1/7 1 0
2/7 47/62 1

7 1 4
0 62/7 30/7
0 0 7/2

 = LU

7 Conclusion

In its most basic form, pivoting guarantees that Gaussian elimination runs to completion by permut-
ing the matrix whenever a zero pivot is encountered. However, pivoting is more beneficial than just
ensuring Gaussian elimination goes to completion. When doing numerical computations, we pivot
to avoid small pivots in addition to zero pivots. They are the cause of instability in the factorization
and pivoting is advatageous in avoiding those small pivots. Pivoting dramatically reduces roundoff
error in numerical calcuations by preventing large entries from being present in the factors L and
U . This also makes the LU factorization backward stable which is essential when using L and U to
solve a system of equations. Partial pivoting is the most common pivoting strategy because it is the
cheapest, fastest algorithm to use while sacrifing very little accuracy. In practice, partial pivoting
is just as accurate as complete pivoting. Complete pivoting is theoretically the most stable strategy
as it can be used even when a matrix is singular, but it is much slower than partial pivoting. Rook
pivoting is the newest strategy and it combines the speed of partial pivoting with the accuracy of
complete pivoting. That being said, it is fairly new and not as widely used as partial pivoting.
Pivoting is essential to any LU factorization as it ensures accurate and stable computations.
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