Multilinear Algebra

Davis Shurbert
University of Puget Sound

April 17, 2014

Overview

(1) Basics

- Multilinearity
- Dual Space
(2) Tensors
- Tensor Product
- Basis of $\mathcal{T}_{q}^{P}(V)$
(3) Component Representation
- Kronecker Product
- Components
- Comparison

Multilinear Functions

Definition

A function $f: V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y) .
$$

Multilinear Functions

Definition

A function $f: V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

Definition
A function $f: V \times U \mapsto W$, where V, U, and W are vector spaces over a field F, is bilinear if for all x, y in V and all α, β in F

$$
\begin{aligned}
& f\left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha f\left(x_{1}, y\right)+\beta f\left(x_{2}, y\right), \text { and } \\
& f\left(x, \alpha y_{1}+\beta y_{2}\right)=\alpha f\left(x, y_{1}\right)+\beta f\left(x, y_{2}\right) .
\end{aligned}
$$

Multilinear Functions

Definition

A function $f: V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

Definition
A function $f: V \times U \mapsto W$, where V, U, and W are vector spaces over a field F, is bilinear if for all x, y in V and all α, β in F

$$
\begin{aligned}
& f\left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha f\left(x_{1}, y\right)+\beta f\left(x_{2}, y\right), \text { and } \\
& f\left(x, \alpha y_{1}+\beta y_{2}\right)=\alpha f\left(x, y_{1}\right)+\beta f\left(x, y_{2}\right) .
\end{aligned}
$$

Multilinear Functions

Definition

A function $f: V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

Definition
A function $f: V \times U \mapsto W$, where V, U, and W are vector spaces over a field F, is bilinear if for all x, y in V and all α, β in F

$$
\begin{aligned}
& f\left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha f\left(x_{1}, y\right)+\beta f\left(x_{2}, y\right), \text { and } \\
& f\left(x, \alpha y_{1}+\beta y_{2}\right)=\alpha f\left(x, y_{1}\right)+\beta f\left(x, y_{2}\right) .
\end{aligned}
$$

Multilinear Functions

Definition

A function $f: V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

Definition
A function $f: V \times U \mapsto W$, where V, U, and W are vector spaces over a field F, is bilinear if for all x, y in V and all α, β in F

$$
\begin{aligned}
& f\left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha f\left(x_{1}, y\right)+\beta f\left(x_{2}, y\right), \text { and } \\
& f\left(x, \alpha y_{1}+\beta y_{2}\right)=\alpha f\left(x, y_{1}\right)+\beta f\left(x, y_{2}\right) .
\end{aligned}
$$

Multilinear Functions

Definition

A function $f: V \mapsto W$, where V and W are vector spaces over a field F, is linear if for all x, y in V and all α, β in F

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

Definition
A function $f: V \times U \mapsto W$, where V, U, and W are vector spaces over a field F, is bilinear if for all x, y in V and all α, β in F

$$
\begin{aligned}
& f\left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha f\left(x_{1}, y\right)+\beta f\left(x_{2}, y\right), \text { and } \\
& f\left(x, \alpha y_{1}+\beta y_{2}\right)=\alpha f\left(x, y_{1}\right)+\beta f\left(x, y_{2}\right) .
\end{aligned}
$$

Multilinear Functions

Definition

A function $f: V_{1} \times \cdots \times V_{s} \mapsto W$, where $\left\{V_{i}\right\}_{i=1}^{s}$ and W are vector spaces over a field F, is s-linear if for all x_{i}, y_{i} in V_{i} and all α, β in F

$$
\begin{aligned}
& f\left(v_{1}, \ldots, \alpha x_{i}+\beta y_{i}, \ldots, v_{s}\right)= \\
& \alpha f\left(v_{1}, \ldots, x_{i}, \ldots, v_{s}\right)+\beta f\left(v_{1}, \ldots, y_{i}, \ldots, v_{s}\right)
\end{aligned}
$$

for all indices i in $\{1, \ldots, s\}$.

Multilinear Functions

Definition

A function $f: V_{1} \times \cdots \times V_{s} \mapsto W$, where $\left\{V_{i}\right\}_{i=1}^{s}$ and W are vector spaces over a field F, is s-linear if for all x_{i}, y_{i} in V_{i} and all α, β in F

$$
\begin{aligned}
& f\left(v_{1}, \ldots, \alpha x_{i}+\beta y_{i}, \ldots, v_{s}\right)= \\
& \alpha f\left(v_{1}, \ldots, x_{i}, \ldots, v_{s}\right)+\beta f\left(v_{1}, \ldots, y_{i}, \ldots, v_{s}\right)
\end{aligned}
$$

for all indices i in $\{1, \ldots, s\}$.

Multilinear Functions

Definition

A function $f: V_{1} \times \cdots \times V_{s} \mapsto W$, where $\left\{V_{i}\right\}_{i=1}^{s}$ and W are vector spaces over a field F, is s-linear if for all x_{i}, y_{i} in V_{i} and all α, β in F

$$
\begin{aligned}
& f\left(v_{1}, \ldots, \alpha x_{i}+\beta y_{i}, \ldots, v_{s}\right)= \\
& \alpha f\left(v_{1}, \ldots, x_{i}, \ldots, v_{s}\right)+\beta f\left(v_{1}, \ldots, y_{i}, \ldots, v_{s}\right)
\end{aligned}
$$

for all indices i in $\{1, \ldots, s\}$.

Multilinear Functions

- How do we test if a function f is linear?

Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the $i^{\text {th }}$ input, if f is linear as a function of this input, then f is multilinear.

Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the $i^{\text {th }}$ input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_{i}(x)=f\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_{s}\right)$, then f is s-linear iff \hat{f}_{i} is linear for all i in $\{1, \ldots, s\}$.

Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the $i^{\text {th }}$ input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_{i}(x)=f\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_{s}\right)$, then f is s-linear iff \hat{f}_{i} is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$.

Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the $i^{\text {th }}$ input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_{i}(x)=f\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_{s}\right)$, then f is s-linear iff \hat{f}_{i} is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

$$
\begin{aligned}
& \left\langle\alpha v_{1}+\beta v_{2}, u\right\rangle=\alpha\left\langle v_{1}, u\right\rangle+\beta\left\langle v_{2}, u\right\rangle, \text { and } \\
& \left\langle v, \alpha u_{1}+\beta u_{2}\right\rangle=\alpha\left\langle v, u_{1}\right\rangle+\beta\left\langle v, u_{2}\right\rangle
\end{aligned}
$$

Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the $i^{\text {th }}$ input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_{i}(x)=f\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_{s}\right)$, then f is s-linear iff \hat{f}_{i} is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

$$
\begin{aligned}
& \left\langle\alpha v_{1}+\beta v_{2}, u\right\rangle=\alpha\left\langle v_{1}, u\right\rangle+\beta\left\langle v_{2}, u\right\rangle, \text { and } \\
& \left\langle v, \alpha u_{1}+\beta u_{2}\right\rangle=\alpha\left\langle v, u_{1}\right\rangle+\beta\left\langle v, u_{2}\right\rangle
\end{aligned}
$$

Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the $i^{\text {th }}$ input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_{i}(x)=f\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_{s}\right)$, then f is s-linear iff \hat{f}_{i} is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

$$
\begin{aligned}
& \left\langle\alpha v_{1}+\beta v_{2}, u\right\rangle=\alpha\left\langle v_{1}, u\right\rangle+\beta\left\langle v_{2}, u\right\rangle, \text { and } \\
& \left\langle v, \alpha u_{1}+\beta u_{2}\right\rangle=\alpha\left\langle v, u_{1}\right\rangle+\beta\left\langle v, u_{2}\right\rangle
\end{aligned}
$$

Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the $i^{\text {th }}$ input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_{i}(x)=f\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_{s}\right)$, then f is s-linear iff \hat{f}_{i} is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

$$
\begin{aligned}
& \left\langle\alpha v_{1}+\beta v_{2}, u\right\rangle=\alpha\left\langle v_{1}, u\right\rangle+\beta\left\langle v_{2}, u\right\rangle, \text { and } \\
& \left\langle v, \alpha u_{1}+\beta u_{2}\right\rangle=\alpha\left\langle v, u_{1}\right\rangle+\beta\left\langle v, u_{2}\right\rangle
\end{aligned}
$$

Multilinear Functions

- How do we test if a function f is linear?
- Fix all inputs of f except the $i^{\text {th }}$ input, if f is linear as a function of this input, then f is multilinear.
- In other words, define $\hat{f}_{i}(x)=f\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1} \ldots, v_{s}\right)$, then f is s-linear iff \hat{f}_{i} is linear for all i in $\{1, \ldots, s\}$.

Example

We already know of a bilinear function from $V \times V \mapsto \mathbb{R}$. Any inner product defined on V is such a function, as

$$
\begin{aligned}
& \left\langle\alpha v_{1}+\beta v_{2}, u\right\rangle=\alpha\left\langle v_{1}, u\right\rangle+\beta\left\langle v_{2}, u\right\rangle, \text { and } \\
& \left\langle v, \alpha u_{1}+\beta u_{2}\right\rangle=\alpha\left\langle v, u_{1}\right\rangle+\beta\left\langle v, u_{2}\right\rangle
\end{aligned}
$$

More Examples

Example

When treated as a function of the columns (or rows) of an $n \times n$ matrix, the determinant is n-linear.

More Examples

Example

When treated as a function of the columns (or rows) of an $n \times n$ matrix, the determinant is n-linear.

Example

For any collection of vector spaces $\left\{V_{i}\right\}_{i=1}^{s}$, and any collection of linear functions $f_{i}: V_{i} \mapsto \mathbb{R}$, the function

$$
f\left(v_{1}, \ldots v_{s}\right)=\prod_{i=1}^{s}\left(f_{i}\left(v_{i}\right)\right)
$$

is s-linear.

Dual Space

- Fix a vector space V over \mathbb{R}, where $\operatorname{dim}(V)=N$.

Dual Space

- Fix a vector space V over \mathbb{R}, where $\operatorname{dim}(V)=N$.
- Consider the set of all linear functions $f: V \mapsto \mathbb{R}$, denoted $\mathcal{L}(V: \mathbb{R})$.

Dual Space

- Fix a vector space V over \mathbb{R}, where $\operatorname{dim}(V)=N$.
- Consider the set of all linear functions $f: V \mapsto \mathbb{R}$, denoted $\mathcal{L}(V: \mathbb{R})$.
- What does this set look like?

Dual Space

- Fix a vector space V over \mathbb{R}, where $\operatorname{dim}(V)=N$.
- Consider the set of all linear functions $f: V \mapsto \mathbb{R}$, denoted $\mathcal{L}(V: \mathbb{R})$.
- What does this set look like?
- \mathbb{R} is a vector space of dimension 1 , so $\mathcal{L}(V: \mathbb{R})$ is the set of all linear transformations from an N-dimensional vector space to a 1-dimensional vector space.

Dual Space

- Fix a vector space V over \mathbb{R}, where $\operatorname{dim}(V)=N$.
- Consider the set of all linear functions $f: V \mapsto \mathbb{R}$, denoted $\mathcal{L}(V: \mathbb{R})$.
- What does this set look like?
- \mathbb{R} is a vector space of dimension 1 , so $\mathcal{L}(V: \mathbb{R})$ is the set of all linear transformations from an N -dimensional vector space to a 1-dimensional vector space.
- We can thus represent every element of $\mathcal{L}(V: \mathbb{R})$ as a $1 \times N$ matrix, otherwise known as a row vector.

Dual Space

- Fix a vector space V over \mathbb{R}, where $\operatorname{dim}(V)=N$.
- Consider the set of all linear functions $f: V \mapsto \mathbb{R}$, denoted $\mathcal{L}(V: \mathbb{R})$.
- What does this set look like?
- \mathbb{R} is a vector space of dimension 1 , so $\mathcal{L}(V: \mathbb{R})$ is the set of all linear transformations from an N -dimensional vector space to a 1-dimensional vector space.
- We can thus represent every element of $\mathcal{L}(V: \mathbb{R})$ as a $1 \times N$ matrix, otherwise known as a row vector.

Definition
$\mathcal{L}(V: \mathbb{R})$ is the dual space of V, and is denoted V^{*}.

Dual Space

- $V^{*} \cong V$, as they are both vector spaces of dimension N.

Dual Space

- $V^{*} \cong V$, as they are both vector spaces of dimension N.
- v^{*} denotes an arbitrary element of V^{*}, rather than the conjugate transpose of $v \in V$.

Dual Space

- $V^{*} \cong V$, as they are both vector spaces of dimension N.
- v^{*} denotes an arbitrary element of V^{*}, rather than the conjugate transpose of $v \in V$.
- We keep this distinction in order to preserve generality.

Dual Space

- $V^{*} \cong V$, as they are both vector spaces of dimension N.
- v^{*} denotes an arbitrary element of V^{*}, rather than the conjugate transpose of $v \in V$.
- We keep this distinction in order to preserve generality.
- Elements of V are vectors while elements of V^{*} are covectors

Dual Space

- $V^{*} \cong V$, as they are both vector spaces of dimension N.
- v^{*} denotes an arbitrary element of V^{*}, rather than the conjugate transpose of $v \in V$.
- We keep this distinction in order to preserve generality.
- Elements of V are vectors while elements of V^{*} are covectors
- $\left(V^{*}\right)^{*}$ is identical to V.

Dual Space

- $V^{*} \cong V$, as they are both vector spaces of dimension N.
- v^{*} denotes an arbitrary element of V^{*}, rather than the conjugate transpose of $v \in V$.
- We keep this distinction in order to preserve generality.
- Elements of V are vectors while elements of V^{*} are covectors
- $\left(V^{*}\right)^{*}$ is identical to V.
- Notation: $\left\langle v^{*}, v\right\rangle$ denotes the value of v^{*} evaluated at v. For our purposes, consider it the inner product of v and $\left(v^{*}\right)^{T}$.

Tensors

Definition
A tensor of order (p, q) is a $(p+q)$-linear map

$$
T: \underbrace{V^{*} \times \cdots \times V^{*}}_{p \text { times }} \times \underbrace{V \times \cdots \times V}_{q \text { times }} \mapsto \mathbb{R} .
$$

We denote the set of all order (p, q) tensors on V as $\mathcal{T}_{q}^{p}(V)$

Tensors

Definition
A tensor of order (p, q) is a $(p+q)$-linear map

$$
T: \underbrace{V^{*} \times \cdots \times V^{*}}_{p \text { times }} \times \underbrace{V \times \cdots \times V}_{q \text { times }} \mapsto \mathbb{R} .
$$

We denote the set of all order (p, q) tensors on V as $\mathcal{T}_{q}^{p}(V)$

- $\mathcal{T}_{q}^{p}(V)$ forms a vector space under natural operations, as the cartesian product of n vector spaces over F forms a vector space over $F \times \cdots \times F$.

Tensors

Definition
A tensor of order (p, q) is a $(p+q)$-linear map

$$
T: \underbrace{V^{*} \times \cdots \times V^{*}}_{p \text { times }} \times \underbrace{V \times \cdots \times V}_{q \text { times }} \mapsto \mathbb{R} .
$$

We denote the set of all order (p, q) tensors on V as $\mathcal{T}_{q}^{p}(V)$

- $\mathcal{T}_{q}^{P}(V)$ forms a vector space under natural operations, as the cartesian product of n vector spaces over F forms a vector space over $F \times \cdots \times F$.
- $\mathcal{T}_{1}^{0}(V)=V^{*}, \mathcal{T}_{0}^{1}(V)=V$, and $\mathcal{T}_{1}^{1}(V) \cong L(V: V)$.

Tensors

Definition
A tensor of order (p, q) is a $(p+q)$-linear map

$$
T: \underbrace{V^{*} \times \cdots \times V^{*}}_{p \text { times }} \times \underbrace{V \times \cdots \times V}_{q \text { times }} \mapsto \mathbb{R} .
$$

We denote the set of all order (p, q) tensors on V as $\mathcal{T}_{q}^{p}(V)$

- $\mathcal{T}_{q}^{p}(V)$ forms a vector space under natural operations, as the cartesian product of n vector spaces over F forms a vector space over $F \times \cdots \times F$.
- $\mathcal{T}_{1}^{0}(V)=V^{*}, \mathcal{T}_{0}^{1}(V)=V$, and $\mathcal{T}_{1}^{1}(V) \cong L(V: V)$.
- That is, lower order tensors are the 1 and 2 dimensional arrays we usually work with.

Given any two vectors $v^{*} \in V^{*}$ and $v \in V$, we can construct a tensor of order $(1,1)$.

Given any two vectors $v^{*} \in V^{*}$ and $v \in V$, we can construct a tensor of order $(1,1)$.

Example
Consider the function $\left(v \otimes v^{*}\right): V^{*} \times V \mapsto \mathbb{R}$, defined as

$$
\left(v \otimes v^{*}\right)\left(u^{*}, u\right)=\left\langle u^{*}, v\right\rangle\left\langle v^{*}, u\right\rangle
$$

Given any two vectors $v^{*} \in V^{*}$ and $v \in V$, we can construct a tensor of order $(1,1)$.

Example
Consider the function $\left(v \otimes v^{*}\right): V^{*} \times V \mapsto \mathbb{R}$, defined as

$$
\left(v \otimes v^{*}\right)\left(u^{*}, u\right)=\left\langle u^{*}, v\right\rangle\left\langle v^{*}, u\right\rangle
$$

Given any two vectors $v^{*} \in V^{*}$ and $v \in V$, we can construct a tensor of order $(1,1)$.

Example
Consider the function $\left(v \otimes v^{*}\right): V^{*} \times V \mapsto \mathbb{R}$, defined as

$$
\left(v \otimes v^{*}\right)\left(u^{*}, u\right)=\left\langle u^{*}, v\right\rangle\left\langle v^{*}, u\right\rangle
$$

Given any two vectors $v^{*} \in V^{*}$ and $v \in V$, we can construct a tensor of order $(1,1)$.

Example
Consider the function $\left(v \otimes v^{*}\right): V^{*} \times V \mapsto \mathbb{R}$, defined as

$$
\left(v \otimes v^{*}\right)\left(u^{*}, u\right)=\left\langle u^{*}, v\right\rangle\left\langle v^{*}, u\right\rangle
$$

- Recall that this is a special case of our earlier example, as $\left(v \otimes v^{*}\right)$ is the product of two linear functions.

There is a very natural extension of the operator \otimes to allow any number of vectors and covectors.

There is a very natural extension of the operator \otimes to allow any number of vectors and covectors.

Definition
For any collection of vectors $\left\{v_{i}\right\}_{i=1}^{p}$, and vectors $\left\{v^{j}\right\}_{j=1}^{p}$, their tensor product is the function

$$
v_{1} \otimes \cdots \otimes v_{p} \otimes v^{1} \otimes \cdots \otimes v^{q}: \underbrace{V^{*} \times \cdots \times V^{*}}_{p \text { times }} \times \underbrace{V \times \cdots \times V}_{q \text { times }} \mapsto \mathbb{R},
$$

defined as

$$
\begin{aligned}
& \left(v_{1} \otimes \cdots \otimes v_{p} \otimes v^{1} \otimes \cdots \otimes v^{q}\right)\left(u^{1}, \ldots u^{p}, u_{1}, \ldots u_{q}\right) \\
& =\left\langle u^{1}, v_{1}\right\rangle \cdots\left\langle u^{p}, v_{p}\right\rangle\left\langle v^{1}, u_{1}\right\rangle \cdots\left\langle v^{q}, u_{q}\right\rangle
\end{aligned}
$$

There is a very natural extension of the operator \otimes to allow any number of vectors and covectors.

Definition
For any collection of vectors $\left\{v_{i}\right\}_{i=1}^{p}$, and vectors $\left\{v^{j}\right\}_{j=1}^{p}$, their tensor product is the function

$$
v_{1} \otimes \cdots \otimes v_{p} \otimes v^{1} \otimes \cdots \otimes v^{q}: \underbrace{V^{*} \times \cdots \times V^{*}}_{p \text { times }} \times \underbrace{V \times \cdots \times V}_{q \text { times }} \mapsto \mathbb{R},
$$

defined as

$$
\begin{aligned}
& \left(v_{1} \otimes \cdots \otimes v_{p} \otimes v^{1} \otimes \cdots \otimes v^{q}\right)\left(u^{1}, \ldots u^{p}, u_{1}, \ldots u_{q}\right) \\
& =\left\langle u^{1}, v_{1}\right\rangle \cdots\left\langle u^{p}, v_{p}\right\rangle\left\langle v^{1}, u_{1}\right\rangle \cdots\left\langle v^{q}, u_{q}\right\rangle
\end{aligned}
$$

There is a very natural extension of the operator \otimes to allow any number of vectors and covectors.

Definition
For any collection of vectors $\left\{v_{i}\right\}_{i=1}^{p}$, and vectors $\left\{v^{j}\right\}_{j=1}^{p}$, their tensor product is the function

$$
v_{1} \otimes \cdots \otimes v_{p} \otimes v^{1} \otimes \cdots \otimes v^{q}: \underbrace{V^{*} \times \cdots \times V^{*}}_{p \text { times }} \times \underbrace{V \times \cdots \times V}_{q \text { times }} \mapsto \mathbb{R},
$$

defined as

$$
\begin{aligned}
& \left(v_{1} \otimes \cdots \otimes v_{p} \otimes v^{1} \otimes \cdots \otimes v^{q}\right)\left(u^{1}, \ldots u^{p}, u_{1}, \ldots u_{q}\right) \\
& =\left\langle u^{1}, v_{1}\right\rangle \cdots\left\langle u^{p}, v_{p}\right\rangle\left\langle v^{1}, u_{1}\right\rangle \cdots\left\langle v^{q}, u_{q}\right\rangle
\end{aligned}
$$

- Tensors formed from the tensor product of vectors and covectors are called simple tensors.
- Tensors formed from the tensor product of vectors and covectors are called simple tensors.
- In general, not all tensors are simple.
- Tensors formed from the tensor product of vectors and covectors are called simple tensors.
- In general, not all tensors are simple.
- However, we can use simple tensors to build a basis of $\mathcal{T}_{q}^{p}(V)$.
- Tensors formed from the tensor product of vectors and covectors are called simple tensors.
- In general, not all tensors are simple.
- However, we can use simple tensors to build a basis of $\mathcal{T}_{q}^{p}(V)$.

Theorem

For any basis of $V, B=\left\{e_{i}\right\}_{i=1}^{N}$, there exists a unique dual basis of V^{*} relative to B, denoted $\left\{e^{j}\right\}_{j=1}^{N}$ and defined as

$$
\left\langle e^{j}, e_{i}\right\rangle=\delta_{i}^{j}=\left\{\begin{array}{ll}
1, & \text { if } i=j \\
0, & \text { if } i \neq j
\end{array} .\right.
$$

Theorem

For any basis $\left\{e_{i}\right\}_{i=1}^{N}$ of V, and the corresponding dual basis $\left\{e^{j}\right\}_{j=1}^{N}$ of V^{*}, the set of simple tensors

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{p}} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{q}}\right\}
$$

for all combinations of $\left\{i_{k}\right\}_{k=1}^{p} \in\{1, \ldots, N\}$ and $\left\{j_{z}\right\}_{z=1}^{q} \in\{1, \ldots, N\}$, forms a basis of $\mathcal{T}_{q}^{p}(V)$.

Theorem

For any basis $\left\{e_{i}\right\}_{i=1}^{N}$ of V, and the corresponding dual basis $\left\{e^{j}\right\}_{j=1}^{N}$ of V^{*}, the set of simple tensors

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{p}} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{q}}\right\}
$$

for all combinations of $\left\{i_{k}\right\}_{k=1}^{p} \in\{1, \ldots, N\}$ and $\left\{j_{z}\right\}_{z=1}^{q} \in\{1, \ldots, N\}$, forms a basis of $\mathcal{T}_{q}^{p}(V)$.

- The size of this basis is $N^{(p+q)}$.

Theorem

For any basis $\left\{e_{i}\right\}_{i=1}^{N}$ of V, and the corresponding dual basis $\left\{e^{j}\right\}_{j=1}^{N}$ of V^{*}, the set of simple tensors

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{p}} \otimes e^{j_{1}} \otimes \cdots \otimes e^{j_{q}}\right\}
$$

for all combinations of $\left\{i_{k}\right\}_{k=1}^{p} \in\{1, \ldots, N\}$ and $\left\{j_{z}\right\}_{z=1}^{q} \in\{1, \ldots, N\}$, forms a basis of $\mathcal{T}_{q}^{p}(V)$.

- The size of this basis is $N^{(p+q)}$.
- Simplified proof in my paper, but our relation of linear dependence is nasty ($p+q$ nested sums).

Kronecker Product

Can we use this basis to find a component representation of tensors in $\mathcal{T}_{q}^{p}(V)$?

Kronecker Product

Can we use this basis to find a component representation of tensors in $\mathcal{T}_{q}^{p}(V)$? Yes, but first...

Definition

For two matrices $A_{m \times n}$ and $B_{p \times q}$, the Kronecker product of A and B is defined as

$$
A \otimes B=\left(\begin{array}{cccc}
{[A]_{1,1} B} & {[A]_{1,2} B} & \cdots & {[A]_{1, n} B} \\
{[A]_{2,1} B} & {[A]_{2,2} B} & \cdots & {[A]_{2, n} B} \\
\vdots & \vdots & \ddots & \vdots \\
{[A]_{m, 1} B} & {[A]_{m, 2} B} & \cdots & {[A]_{m, n} B}
\end{array}\right)
$$

Kronecker Product

Can we use this basis to find a component representation of tensors in $\mathcal{T}_{q}^{p}(V)$? Yes, but first...

Definition

For two matrices $A_{m \times n}$ and $B_{p \times q}$, the Kronecker product of A and B is defined as

$$
A \otimes B=\left(\begin{array}{cccc}
{[A]_{1,1} B} & {[A]_{1,2} B} & \cdots & {[A]_{1, n} B} \\
{[A]_{2,1} B} & {[A]_{2,2} B} & \cdots & {[A]_{2, n} B} \\
\vdots & \vdots & \ddots & \vdots \\
{[A]_{m, 1} B} & {[A]_{m, 2} B} & \cdots & {[A]_{m, n} B}
\end{array}\right)
$$

- Can be represented by 2-dimensional array, but we consider this product to be a list of lists, table of lists, list of tables, table of tables, ect.

Components as Basis Images

Definition

In general, we define the components of $T \in \mathcal{T}_{q}^{p}(V)$ to be the $(p+q)$-indexed scalars

$$
A_{j_{1}, \ldots, j_{q}}^{i_{1}, \ldots, i_{p}}=A\left(e^{i_{1}}, \ldots, e^{i_{p}}, e_{j_{1}}, \ldots, e_{j_{q}}\right) .
$$

Components as Basis Images

Definition
In general, we define the components of $T \in \mathcal{T}_{q}^{p}(V)$ to be the
$(p+q)$-indexed scalars

$$
A_{j_{1}, \ldots, j_{q}}^{i_{1}, \ldots, i_{p}}=A\left(e^{i_{1}}, \ldots, e^{i_{p}}, e_{j_{1}}, \ldots, e_{j_{q}}\right) .
$$

- For vectors, this is exactly how we define components $\left(\left\langle v, e_{i}\right\rangle=[v]_{i}\right)$.

Components as Basis Images

Definition

In general, we define the components of $T \in \mathcal{T}_{q}^{p}(V)$ to be the
$(p+q)$-indexed scalars

$$
A_{j_{1}, \ldots, j_{q}}^{i_{1}, \ldots, i_{p}}=A\left(e^{i_{1}}, \ldots, e^{i_{p}}, e_{j_{1}}, \ldots, e_{j_{q}}\right) .
$$

- For vectors, this is exactly how we define components $\left(\left\langle v, e_{i}\right\rangle=[v]_{i}\right)$.
- If T is a simple tensor, then the $(p+q)$-dimensional array formed by $A_{j_{1}, \ldots, j_{q}}^{i_{1}, \ldots, i_{p}}$ is equal to the Kronecker product of the vectors and covectors which make up T.

Example

For $V=\mathbb{R}^{2}$, consider the vectors $u=\left[\begin{array}{l}1 \\ 1\end{array}\right], v^{*}=\left[\begin{array}{ll}2 & 1\end{array}\right]$, and $w^{*}=\left[\begin{array}{ll}1 & 3\end{array}\right]$. Let $A=u \otimes v^{*} \otimes w^{*}$ and consider

Example

For $V=\mathbb{R}^{2}$, consider the vectors $u=\left[\begin{array}{l}1 \\ 1\end{array}\right], v^{*}=\left[\begin{array}{ll}2 & 1\end{array}\right]$, and $w^{*}=\left[\begin{array}{ll}1 & 3\end{array}\right]$. Let $A=u \otimes v^{*} \otimes w^{*}$ and consider

$$
A_{1}^{1,1}=A\left(e^{1}, e_{1}, e_{1}\right)
$$

$$
=\left\langle\left[\begin{array}{ll}
1 & 0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\rangle\left\langle\left[\begin{array}{ll}
2 & 1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\rangle\left\langle\left[\begin{array}{ll}
1 & 3
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\rangle
$$

$$
=2
$$

$$
A_{1}^{2,1}=A\left(e^{1}, e_{2}, e_{1}\right)=1
$$

$$
A_{1}^{1,2}=A\left(e^{1}, e_{1}, e_{2}\right)=6
$$

Example

Or, we can take the Kronecker product $u \otimes v^{*} \otimes w^{*}$ to get

Example

Or, we can take the Kronecker product $u \otimes v^{*} \otimes w^{*}$ to get

$$
\begin{aligned}
u \otimes v^{*} \otimes w^{*} & =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{ll}
2 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
2\left[\begin{array}{ll}
1 & 3
\end{array}\right] & 1\left[\begin{array}{ll}
1 & 3 \\
2\left[\begin{array}{ll}
1 & 3
\end{array}\right] & 1\left[\begin{array}{ll}
1 & 3
\end{array}\right]
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 6 \\
2 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

Either way, we get

Either way, we get

References

1. INTRODUCTION TO VECTORS AND TENSORS, Linear and Multilinear Algebra, Volume 1. Ray M. Bowen, C.-C. Wang. Updated 2010. (Freely available at: http://repository.tamu.edu/bitstream/handle/ 1969.1/2502/IntroductionToVectorsAndTensorsVol1.pdf?s..)
2. Matrix Analysis for Scientists and Engineers, Alan J. Laub. (Relevant chapter at http://www.siam.org/books/textbooks/OT91sample.pdf)
3. Notes on Tensor Products and the Exterior Algebra, K. Purbhoo. Updated 2008 (Lecture notes, available at http://www.math.uwaterloo.ca/ kpurbhoo/spring2012math245/tensor.pdf)
4. Linear Algebra via Exterior Products. Sergei Winitzki. Copyright 2002.
5. Tensor Spaces and Exterior Algebra. Takeo Yokonuma. English version translated 1991.
6. Multilinear Algebra. Werner Greub. Springer, updated 2013.
7. Eigenvalues of the Adjacency Tensor on Products of Hypergraphs. Kelly J. Pearson, Tan Zhang. October, 2012 http://www.m-hikari.com/ijcms/ijcms-2013/1-4-2013/pearsonIJCMS1-4-2013.pdf

The End

