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Basics Multilinearity

Multilinear Functions

Definition

A function f : V 7→W , where V and W are vector spaces over a field F ,
is linear if for all x , y in V and all α, β in F

f (αx + βy) = αf (x) + βf (y).

Definition

A function f : V × U 7→W , where V , U, and W are vector spaces over a
field F , is bilinear if for all x , y in V and all α, β in F

f (αx1 + βx2, y) = αf (x1, y) + βf (x2, y), and

f (x , αy1 + βy2) = αf (x , y1) + βf (x , y2).
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Basics Multilinearity

Multilinear Functions

Definition

A function f : V1 × · · · × Vs 7→W , where {Vi}si=1 and W are vector
spaces over a field F , is s-linear if for all xi , yi in Vi and all α, β in F

f (v1, . . . , αxi + βyi , . . . , vs) =

αf (v1, . . . , xi , . . . , vs) + βf (v1, . . . , yi , . . . , vs),

for all indices i in {1, . . . , s}.
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Basics Multilinearity

Multilinear Functions

How do we test if a function f is linear?

Fix all inputs of f except the i th input, if f is linear as a function of
this input, then f is multilinear.

In other words, define f̂i (x) = f (v1, . . . , vi−1, x , vi+1 . . . , vs) , then f
is s-linear iff f̂i is linear for all i in {1, . . . , s}.

Example

We already know of a bilinear function from V × V 7→ R.

Any inner
product defined on V is such a function, as

〈αv1 + βv2, u〉 = α〈v1, u〉+ β〈v2, u〉, and

〈v , αu1 + βu2〉 = α〈v , u1〉+ β〈v , u2〉
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Basics Multilinearity

More Examples

Example

When treated as a function of the columns (or rows) of an n × n matrix,
the determinant is n-linear.

Example

For any collection of vector spaces {Vi}si=1, and any collection of linear
functions fi : Vi 7→ R, the function

f (v1, . . . vs) =
s∏

i=1

(fi (vi ))

is s-linear.
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Basics Dual Space

Dual Space

Fix a vector space V over R, where dim(V ) = N.

Consider the set of all linear functions f : V 7→ R, denoted L(V : R).

What does this set look like?

R is a vector space of dimension 1, so L(V : R) is the set of all linear
transformations from an N-dimensional vector space to a
1-dimensional vector space.

We can thus represent every element of L(V : R) as a 1× N matrix,
otherwise known as a row vector.

Definition

L(V : R) is the dual space of V , and is denoted V ∗.
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Basics Dual Space

Dual Space

V ∗ ∼= V , as they are both vector spaces of dimension N.

v∗ denotes an arbitrary element of V ∗, rather than the conjugate
transpose of v ∈ V .

We keep this distinction in order to preserve generality.

Elements of V are vectors while elements of V ∗ are covectors

(V ∗)∗ is identical to V .

Notation: 〈v∗, v〉 denotes the value of v∗ evaluated at v . For our
purposes, consider it the inner product of v and (v∗)T .
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Tensors

Tensors

Definition

A tensor of order (p, q) is a (p + q)-linear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
p times

×V × · · · × V︸ ︷︷ ︸
q times

7→ R.

We denote the set of all order (p, q) tensors on V as T p
q (V )

T p
q (V ) forms a vector space under natural operations, as the

cartesian product of n vector spaces over F forms a vector space over
F × · · · × F .

T 0
1 (V ) = V ∗, T 1

0 (V ) = V , and T 1
1 (V ) ∼= L(V : V ).

That is, lower order tensors are the 1 and 2 dimensional arrays we
usually work with.
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Tensors Tensor Product

Given any two vectors v∗ ∈ V ∗ and v ∈ V , we can construct a tensor of
order (1, 1).

Example

Consider the function (v ⊗ v∗) : V ∗ × V 7→ R, defined as

(v ⊗ v∗)(u∗, u) = 〈u∗, v〉〈v∗, u〉

Recall that this is a special case of our earlier example, as (v ⊗ v∗) is
the product of two linear functions.
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Tensors Tensor Product

There is a very natural extension of the operator ⊗ to allow any number of
vectors and covectors.

Definition

For any collection of vectors {vi}pi=1, and vectors {v j}pj=1, their tensor
product is the function

v1 ⊗ · · · ⊗ vp ⊗ v1 ⊗ · · · ⊗ vq : V ∗ × · · · × V ∗︸ ︷︷ ︸
p times

×V × · · · × V︸ ︷︷ ︸
q times

7→ R,

defined as

(v1 ⊗ · · · ⊗ vp ⊗ v1 ⊗ · · · ⊗ vq)(u1, . . . up, u1, . . . uq)

= 〈u1, v1〉 · · · 〈up, vp〉〈v1, u1〉 · · · 〈vq, uq〉
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Tensors Basis of T p
q (V )

Tensors formed from the tensor product of vectors and covectors are
called simple tensors.

In general, not all tensors are simple.

However, we can use simple tensors to build a basis of T p
q (V ).

Theorem

For any basis of V , B = {ei}Ni=1, there exists a unique dual basis of V ∗

relative to B, denoted {e j}Nj=1 and defined as

〈e j , ei 〉 = δji =

{
1, if i = j

0, if i 6= j
.
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Tensors Basis of T p
q (V )

Theorem

For any basis {ei}Ni=1 of V , and the corresponding dual basis {e j}Nj=1 of
V ∗, the set of simple tensors

{ei1 ⊗ · · · ⊗ eip ⊗ e j1 ⊗ · · · ⊗ e jq}

for all combinations of {ik}pk=1 ∈ {1, . . . ,N} and {jz}qz=1 ∈ {1, . . . ,N},
forms a basis of T p

q (V ).

The size of this basis is N(p+q).

Simplified proof in my paper, but our relation of linear dependence is
nasty (p + q nested sums).
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Component Representation Kronecker Product

Kronecker Product

Can we use this basis to find a component representation of tensors in
T p
q (V )?

Yes, but first...

Definition

For two matrices Am×n and Bp×q, the Kronecker product of A and B is
defined as

A⊗ B =


[A]1,1B [A]1,2B · · · [A]1,nB
[A]2,1B [A]2,2B · · · [A]2,nB

...
...

. . .
...

[A]m,1B [A]m,2B · · · [A]m,nB



Can be represented by 2-dimensional array, but we consider this
product to be a list of lists, table of lists, list of tables, table of tables,
ect.
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Component Representation Components

Components as Basis Images

Definition

In general, we define the components of T ∈ T p
q (V ) to be the

(p + q)-indexed scalars

A
i1,...,ip
j1,...,jq

= A(e i1 , . . . , e ip , ej1 , . . . , ejq).

For vectors, this is exactly how we define components (〈v , ei 〉 = [v ]i ).

If T is a simple tensor, then the (p + q)-dimensional array formed by

A
i1,...,ip
j1,...,jq

is equal to the Kronecker product of the vectors and covectors
which make up T .
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Component Representation Comparison

Example

For V = R2, consider the vectors u =

[
1
1

]
, v∗ =

[
2 1

]
, and

w∗ =
[

1 3
]
. Let A = u ⊗ v∗ ⊗ w∗ and consider

A1,1
1 = A(e1, e1, e1)

= 〈
[

1 0
]
,

[
1
1

]
〉〈
[

2 1
]
,

[
1
0

]
〉〈
[

1 3
]
,

[
1
0

]
〉

= 2

A2,1
1 = A(e1, e2, e1) = 1

A1,2
1 = A(e1, e1, e2) = 6

...
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Component Representation Comparison

Example

Or, we can take the Kronecker product u ⊗ v∗ ⊗ w∗ to get

u ⊗ v∗ ⊗ w∗ =

[
1
1

]
⊗
[

2 1
]
⊗
[

1 3
]

=

[
2 1
2 1

]
⊗
[

1 3
]

=

[
2
[

1 3
]

1
[

1 3
]

2
[

1 3
]

1
[

1 3
] ]

=

[ [
2 6

] [
1 3

][
2 6

] [
1 3

] ] ,
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Component Representation Comparison

Either way, we get
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The End
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