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1 Introduction

When working in the field of linear algebra, it is natural to question whether or not we
can expand our study to include linear transformations of multiple variables. Indeed, cal-
culus students quickly learn that they can extend their tools for one variable functions to
multivariate, vector valued functions. In this vein, we can extend the notion of a linear
transformation to multilinear transformations.

A specific type of multilinear transformations are called tensors. In the study of tensors,
we aim to examine the relationship between a multilinear transformation and representing
that function as a multidimensional array. According to our intuition, we would like to have
a similar method of representation as we have for linear transformations. Indeed, since linear
transformations are by definition a type of tensor, whatever relationship we discover must
be consistent with our understanding of this small dimensional case.

There are many approaches to the definition and study of tensors, as they are used in
a wide array of mathematical fields. This paper takes an abstract mathematical approach
to tensors, realizing them as multilinear transformations from vector spaces to the real
numbers. As to not lose our intuition, we explore the connections between realizing tensors
as multilinear functions and representing tensors as multidimensional arrays. Finally, for the
sake of simplicity we will only consider vector spaces over the real numbers R, leaving the
extension to C as further research for the reader.

2 Dual Space

In order to define tensors, we must cover a few basic concepts in linear algebra. To begin,
consider the set of all linear functions from a vector space V to R, denoted L(V : R). Recall
that in order for f : V 7→ R to be linear, it must be the case that

f(α~u+ β~v) = αf(~u) + βf(~v), for all ~u,~v ∈ V.

If we treat R as a 1-dimensional vector space, then we can easily see that all elements of
L(V : R) are just linear transformations from one vector space to another. From previous
work, we also know that such a set must form a vector space with dimL(V : R) = dimV ·
dimR = dimV . We call L(V : R) the dual space of V and we denote it as V ∗

While the notation is similar to that of taking the conjugate transpose of a vector, this
similarity has a purpose beyond confusing the reader. If we treat V as a space of column
vectors, then L(V : R) = V ∗ can be represented as a space of row vectors with function
input defined as matrix multiplication of a row vector by a column vector. That is, we can
realize any f(x) in L(V : R) as fx for some row vector f , and all input column vectors x.
In addition, since the dimensions of V and V ∗ are equal, we know they are isomorphic as
vector spaces. Thus, we can realize the act of taking the conjugate transpose of a vector as
an isomorphism between V and V ∗.

While elements of V are called vectors, elements of V ∗ are called covectors in their
relationship to V . We denote arbitrary covectors as v∗, while elements of V remain denoted
v. This notation is distinct from our usual use of v∗ in that v∗ is no longer associated to a
specific vector in V . We make this distinction because while the conjugate transpose forms
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an isomorphism between V and V ∗, it may not be the only isomorphism and we need to
account for this in order to maintain full generality.

We denote the value of v∗ evaluated at v by 〈v∗, v〉. This notation purposefully mimics
that of the inner product, and gives us our first multilinear function,

〈 , 〉 : V ∗ × V 7→ R.

Because we have equated 〈v∗, v〉 with matrix multiplication of a row vector by a column
vector, it is no mistake that this bilinear function is almost identical to the standard inner
product. However, we keep this distinction in order to preserve generality, and the similarity
between the two operations brings us to our first theorem.

Theorem 1.1. For a vector space V , and any inner product

· : V × V 7→ R,

there exists a unique isomorphism G : V 7→ V ∗ defined as

G(v) = v∗(x) = v · x

Proof. As a direct result of the definition of an inner product, G must be a linear transfor-
mation. This motivates our investigation of the kernel of G, K(G) = {v ∈ V |K(G) = 0V ∗}.
Recall that the zero element in V ∗ is the linear transformation which takes all inputs to 0R.
0V must be in the kernel since G(0V ) = 0∗

V (x) = 0V · x = 0R for all x ∈ V . Now, for any
nonzero v ∈ V , we have

(G(v))(v) = v∗(v) = v · v 6= 0,

due to the fact that the inner product of a nonzero vector with itself is nonzero. This
shows that for any v 6= 0, there exists an input of G(v) that is not sent to the zero vector.
This directly implies that G(v) 6= 0V ∗ and thus K(G) = {0V }. Because G is a linear
transformation, this is enough to ensure that G is injective.

We now focus our attention on the surjectivity of G. Because G is a linear transformation
from V to V ∗, two isomorphic vector spaces, we can use the fundamental result of linear
transformations that domain dimension is equal to the sum of rank and nullity. This allows
us to conclude that our linear transformation must have full rank, and is thus invertible.

We can think of the isomorphism G from above as the canonical isomorphism between
V and V ∗, and we will use G to reference this isomorphism for the rest of our discussion.
Indeed, if our inner product on V is simply the standard dot product, the difference between
V and V ∗ becomes a nuisance rather than informative. However, our construction of the
dual space is currently independent of the inner product assigned to V , allowing our results
to hold regardless of this choice.

2.1 Dual Basis

Now that we have a solid understanding of the relationship between V and its dual space
V ∗, we aim to find a canonical basis for V ∗. Given a basis B = {ei}Ni=1, we define the dual
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basis of V ∗ relative to B as the set {ej}Nj=1 such that

〈ej, ei〉 = δji =

{
1, if i = j

0, if i 6= j
.

Notationally, ei denotes an index on covectors, rather than powers of vectors which we cannot
make sense of at the moment. Furthermore, δji is called the Kronecker delta. While it is not
obvious, given a basis B of V we can always find a unique dual basis of V ∗ relative to B.

3 Multilinear Functions

Now that we have built up some machinery for dealing with vector spaces and their duals,
we can focus our attention to the study of multilinear functions. If we have a collection of s
vector spaces {Vi}si=1, then we define an s-linear function f as a function

f : V1 × V2 × · · · × Vs 7→ R

that is linear in all of its components. That is, if we fix all inputs of f(v1, v2, . . . , vs) except
for vi, then f becomes a linear function of Vi. That is, for all i ∈ {1, . . . , s},

f(v1, . . . , αui + βvi, . . . , vs) = αf(v1, . . . , ui, . . . , vs) + βf(v1, . . . , vi, . . . , vs).

Of course the concept of a multilinear function holds in the case where our codomain is not R,
but for the purpose of this paper and for the sake of intuition we ignore the generalized case.
Before moving on to the specific example of a tensor, we will now explore some examples of
multilinear functions.

Example 2.1. Consider the function f : R× R× R 7→ R defined as

f(x, y, z) = xyz.

To show that f is 3-linear, we begin by fixing x and z and treat f as a function of one
variable. Consider,

f(x, αy1 + βy2, z) = x(αy1 + βy2)z

= x(αy1)z + x(βy2)z

= αxy1z + βxy2z

= αf(x, y1, z) + βf(x, y2, z).

We have just shown that f is linear in y when we fix x and z, but we can use a similar
argument to show that f is linear in all variables when the remaining inputs are fixed.
Alternatively, since f is a symmetric function, linearity in one variable implies linearity in
all variables.

Example 3.1. Consider any collection of s vector spaces {Vi}si=1, and a collection of linear
functions {Ai}si=1 where Ai : Vi 7→ R. We can define a multilinear function As : V1 × V2 ×
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· · · × Vs 7→ R as

As(v1, v2, . . . , vs) =
s∏

i=1

(Ai(vi)).

It is relatively straightforward to show that As is s-linear, and we leave verification to the
reader as an exercise.

4 Tensors

Restricting our focus to a specific type of multilinear function, we now give our definition
of a tensor. For a vector space V , and positive integers p and q, we define a tensor of order
(p, q) on V as a (p+ q)-linear function

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
p times

×V × · · · × V︸ ︷︷ ︸
q times

7→ R.

In addition, we define a tensor of order (0, 0) to be a scalar in R. We denote the set of all
tensors of order (p, q) on V as T p

q (V ). In fact, T p
q (V ) forms a vector space of dimension Np+q

(where dim(V ) = N) under the following operations. For any α ∈ R, and any A,B ∈ T p
q (V ),

(A+B)(v1, . . . , vp, v1, . . . , vq) = A(v1, . . . , vp, v1, . . . , vq) +B(v1, . . . , vp, v1, . . . , vq), and

(αA)(v1, . . . , vp, v1, . . . , vq) = α(A(v1, . . . , vp, v1, . . . , vq))

While the fact that T p
q (V ) forms a vector space is apparent when we consider it as a set of all

linear transformations from one vector space to another, we leave a more in-depth discussion
of the dimension of this space for later in the paper.

Similarly to the fact that (v∗)∗ = v, we make no distinction between the dual of the dual
of V , (V ∗)∗, and V itself. This fact, along with our definition of V ∗, allows us to conclude
that

T 0
1 (V ) = L(V : R) = V ∗, and T 1

0 (V ) = L(V ∗ : R) = V.

We can now begin to understand the relationship between (p + q)-dimensional arrays and
tensors of order (p, q), as elements of V and V ∗ both have 1-dimensional array represen-
tations. Before we investigate this type of representation for higher order tensors, we now
explore a few more examples of tensors.

Example (Bowen, Wang) 4.1. Given any linear transformation A : V 7→ V , we can define
a bilinear function Â : V ∗ × V 7→ R as

Â(u∗, v) = 〈u∗, Av〉.

We have already established that 〈, 〉 : V ∗ × V 7→ R is bilinear. This fact, together with the
linearity of the matrix vector product allows us to conclude the following.

Â(αu∗1 + βu∗2, v) = 〈αu∗1 + βu∗2, v〉 = α〈u∗1, v〉+ β〈u∗2, v〉 = αÂ(u∗1, v) + βÂ(u∗2, v), and

Â(u∗, αv1 + βv2) = 〈u∗, αv1 + βv2〉 = α〈u∗, v1〉+ β〈u∗, v2〉 = αÂ(u∗, v1) + βÂ(u∗, v2)
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This linearity qualifies Â for membership in T 1
1 (V ). Note that in the case where our inner

product on V is the dot product, and we consider V ∗ as a space of row vectors, we have
Â(u∗, v) = u∗Av.

Proposition 5.1. L(V:V) is isomorphic to T 1
1 (V ), and Z : L(V : V ) 7→ T 1

1 (V ) defined as

Z(A) = Â(u∗, v) = 〈u∗, Av〉

is an isomorphism.

Proof. Presuming that T 1
1 (V ) forms a vector space, we first show that Z is a linear trans-

formation. For any α, β ∈ R and any A,B ∈ L(V : V ), consider

Z(αA+ βB) = ˆ(αA+ βB)(u∗, v) = 〈u∗, (αA+ βB)v〉
= 〈u∗, αAv + βBv〉 = α〈u∗, Av〉+ β〈u∗, Bv〉
= αZ(A) + βZ(B).

Establishing Z as a linear transformation gives us motivation for investigating the kernel
of Z, K(Z). Clearly, the zero linear transformation is in the kernel since 〈u∗, 0(v)〉 =
〈u∗, 0V 〉 = 0 for all u∗ ∈ V ∗. Now, take any nonzero linear transformation A ∈ L(V : V ).
Because A is nonzero, there must exist some v ∈ V such that Av = u is nonzero. Using our
canonical isomorphism G : V 7→ V ∗, consider

Z(A)(G−1(u), v) = 〈G−1(u), Av〉 = 〈G−1(u), u〉 = u · u 6= 0.

Therefore, our kernel K(Z) contains only the zero linear transformation and thus Z is an in-
jective linear transformation. Since dim T 1

1 (V ) = dimV 1+1 = dimV dimV = dimL(V : V ),
this is enough to conclude that Z is an isomorphism.

Example (Bowen, Wang) 6.1. Given any v∗ ∈ V ∗ and any v ∈ V , we can define the
function v ⊗ v∗ : V ∗ × V 7→ R as

(v ⊗ v∗)(u∗, u) = 〈u∗, v〉〈v∗, u〉.

The membership of v⊗ v∗ in T 1
1 (V ) is left as an exercise to the reader. However, recall that

this example is simply a case of Example 3.1 from above. Our isomorphism between T 1
1 (V )

and L(V : V ) allows us to conclude that v ⊗ v∗ can be realized as a linear transformation
from V to V such that

v ⊗ v∗(u∗, u) = 〈u∗, (v ⊗ v∗)u〉 = 〈u∗, v〉〈v∗, u〉.

We call v⊗v∗ the tensor product of v and v∗, and we can represent v⊗v∗ as the Kronecker
product or outer product of v with G−1(v∗) (where G is our canonical isomorphism from V
to V ∗). If v = (v1, v2, . . . , vN), and G−1(v∗) = u = (u1, u2, . . . uN), then the outer product of
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v with u is defined as

v ⊗ u = vuT =


v1u1 v1u2 · · · v1uN
v2u1 v2u2 · · · v2uN

...
...

. . .
...

vNu1 vNu2 · · · vNuN


Example 7.1. If we take V = R2, v =

[
2
1

]
, and v∗ =

[
3 2

]
, we have

A ≡
[

2
1

]
⊗
[

3 2
]

=

[
6 4
3 2

]

Now, evaluate A at (u∗, u) = (
[

0 1
]
,

[
0
1

]
) and investigate.

A(
[

0 1
]
,

[
0
1

]
) = 〈

[
0 1

]
, A

[
0
1

]
〉 = 〈

[
0 1

]
,

[
6 4
3 2

] [
0
1

]
〉

= 〈
[

0 1
]
,

[
4
2

]
〉 = 〈

[
0 1

]
, 2

[
2
1

]
〉

= 〈
[

0 1
]
,

[
2
1

]
〉2 = 〈

[
0 1

]
,

[
2
1

]
〉〈
[

3 2
]
,

[
0
1

]
〉

= 〈u∗, v〉〈v∗, u〉

This property holds for all other combinations (u∗, u) of basis vectors of V ∗ and V respec-
tively. However this can be shown in an entirely similar manner and is left as an exercise
to the reader. The linearity of A ensures that if this property holds for all combinations of
basis vectors, then it holds for all u∗ ∈ V ∗ and all u ∈ V .

5 Tensor Product

We can extend our idea of the tensor product to handle an arbitrary number of vectors
and covectors. Given a vector space V , a collection of vectors {vi}pi=1, and a collection of
covectors {vj}qj=1, we can build a function

v1 ⊗ · · · ⊗ vp ⊗ v1 ⊗ · · · ⊗ vq : V ∗ × · · · × V ∗︸ ︷︷ ︸
p times

×V × · · · × V︸ ︷︷ ︸
q times

7→ R

defined as

(v1 ⊗ · · · ⊗ vp ⊗ v1 ⊗ · · · ⊗ vq)(u1, . . . up, u1, . . . uq) = 〈u1, v1〉 · · · 〈up, vp〉〈v1, u1〉 · · · 〈vq, uq〉

for all {ui}pi=1 ∈ V and all {uj}qj=1 ∈ V ∗. Again, the linearity of this function follows from
Example 3.1. We call such a construction the tensor product of the vectors {vi}pi=1∪{vj}

q
j=1,
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and we use this definition to form a basis for T p
q (V ). Fix a basis of V {ei}Ni=1 , and let

{ej}Nj=1 be the corresponding dual basis of V ∗. It is the case that the set

B = {ei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq}

for all combinations of {ik}pk=1 ∈ {1, . . . , N} and {jz}qz=1 ∈ {1, . . . , N}, forms a basis of
T p
q (V ). Note that B has cardinality Np+q as there are p+ q indices, each ranging from 1 to
N .

Example 8.1. Before we prove that the above B is a basis for T p
q (V ), we will first demon-

strate that we can form a basis for T 1
1 (V ). Let dimV = N , pick a basis of V , {ei}Ni=1, and

find the corresponding dual basis for V ∗, {ej}Nj=1. Consider the following relation of linear
dependence

N∑
i=1

N∑
j=1

αj
iei ⊗ ej = O,

where {αj
i}

N,N
i,j=1 are scalars and O denotes the zero tensor which takes all inputs to 0R. Now

fix z, k ∈ {1, . . . , N} and investigate

0R = (
N∑
i=1

N∑
j=1

αj
iei ⊗ ej)(ek, ez) =

N∑
i=1

N∑
j=1

[(αj
iei ⊗ ej)(ek, ez)]

=
N∑
i=1

N∑
j=1

αj
i 〈ek, ei〉〈ej, ez〉 =

N∑
i=1

N∑
j=1

αj
i δ

k
i δ

j
z.

Recall that δij is the Kronecker delta and is defined on page 4.
So, we have a double sum ranging over the indices i and j, the terms of which all contain

the product δki δ
j
z. By definition, δki δ

j
z = 0 unless i = k and j = z, in which case δki δ

j
z = 1.

This allows us to reduce our sum to

N∑
i=1

N∑
j=1

αj
i δ

k
i δ

j
z = αk

z

which we already know is equal to zero. If we repeat this process for all z, k ∈ {1, . . . , N},
we can conclude that all scalars αj

i are equal to 0. This implies that the set {ei ⊗ ej}Ni,j=1 is
linearly independent.

Now that linear independence has been established for C = {ei ⊗ ej}N,N
i,j=1, we must

show that C spans T 1
1 (V ). First, define the scalars αk

z = A(ek, ez). We already know that
(
∑N

i=1

∑N
j=1 α

j
iei⊗ej)(ek, ez) = αk

z , which by definition is equal to A(ek, ez). This result tells

us that for any combination of basis vectors ei and ej, we can realize A(ei, e
j) as a linear

combination of elements from C evaluated at (ei, e
j). The multilinearity of A allows us to

conclude that for any v ∈ V and v∗ ∈ V ∗, we can realize A(v∗, v) as a a linear combination
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of elements from C evaluated at (v∗, v). That is for some scalars βj
i ,

A(v∗, v) = (
N∑
i=1

N∑
j=1

βj
i ei ⊗ ej)(v∗, v).

This implies that C spans T 1
1 (V ), and we have found our desired basis.

The case of T p
q (V ) with q or p greater than one can be shown using entirely similar proof

techniques. However, completing this proof in full generality becomes very cumbersome
notationally. Furthermore, the abridged proof can be found in [1], which is freely available.

While we have shown that tensors of the form v1⊗· · ·⊗vp⊗v1⊗· · ·⊗vq form a generating
set for T p

q (V ), not every tensor in T p
q (V ) can be realized as the tensor product of vectors

and covectors. For example, if we let V = R2 and define the identity tensor in T 1
1 (V ) as

I(v∗, v) = 〈v∗, IV v〉 = 〈v∗, v〉

where IV denotes the identity transformation from V 7→ V , we can see that IV cannot be
constructed as the Kronecker product of a vector and a covector. This is due to the fact that
the Kronecker product must yield singular matrices, as each row in v⊗v∗ is a scalar multiple
of v∗ by entries in v. However, we can easily compute a basis of L(V : V ) ∼= L(V ∗ × V :
R) ∼= T 1

1 (V ), using the procedure outlined in Example 8.1 and our realization of the tensor
product of vectors as the Kronecker product.

e1 ⊗ e1 =

[
1
0

]
⊗
[

1 0
]

=

[
1 0
0 0

]
e1 ⊗ e2 =

[
1
0

]
⊗
[

0 1
]

=

[
0 1
0 0

]
e2 ⊗ e1 =

[
0
1

]
⊗
[

1 0
]

=

[
0 0
1 0

]
e2 ⊗ e2 =

[
0
1

]
⊗
[

0 1
]

=

[
0 0
0 1

]

6 Tensor Components

While we have discussed how to realize matrices, vectors, and covectors as tensors, we now
focus our attention to representing tensors as indexed components. In particular, we would
like to expand our definition of the Kronecker product to encompass any number of vectors,
matrices, or higher order tensors. For any A in T p

q (V ), we define the N (p+q) components of
A to be the scalars

A
i1,...,ip
j1,...,jq

= A(ei1 , . . . , eip , ej1 , . . . , ejq).

This form is similar to the matrix representation M of a linear transformation T relative to a
given basis B, as we build the rows of M by evaluating T at each element of B. Furthermore,
just as any matrix yields a linear transformation, any indexed collection of scalars A

i1,...,ip
j1,...,jq

yields a tensor in T p
q (V ).

9



Example 9.1. Let V = R2 and consider the identity tensor I in T 1
1 (V ) defined as

I(v∗, v) = 〈v∗, v〉.

We can construct the scalars I ij in row i column j using our definition of tensor components.

I ij = I(ei, ej) = 〈ei, ej〉 = δij

So, our component representation of I is the matrix[
1 0
0 1

]
as expected.

Before exploring a tensor representation which requires more than 2 indices, we must
generalize the Kronecker product. For two matrices Am×n and Bp×q, the Kronecker product
of A and B, A⊗B is defined as

A⊗B =


[A]1,1B [A]1,2B · · · [A]1,nB
[A]2,1B [A]2,2B · · · [A]2,nB

...
...

. . .
...

[A]m,1B [A]m,2B · · · [A]m,nB


While this product can be treated as an array of dimension 2, we will primarily focus on
the Kronecker product of a matrix or tensor by a vector, and treat the resulting object as a
higher dimensional array.

Example 10.1. For V = R2, consider the vectors u =

[
1
1

]
, v∗ =

[
2 1

]
, and w∗ =[

1 3
]
. We can use our standard basis together with its dual basis to construct the com-

ponent representation of the tensor A = (u⊗ v∗ ⊗ w∗) ∈ T 2
1 .

A1,1
1 = A(e1, e1, e1) = 〈

[
1 0

]
,

[
1
1

]
〉〈
[

2 1
]
,

[
1
0

]
〉〈
[

1 3
]
,

[
1
0

]
〉 = 2

A2,1
1 = A(e1, e2, e1) = 〈

[
1 0

]
,

[
1
1

]
〉〈
[

2 1
]
,

[
0
1

]
〉〈
[

1 3
]
,

[
1
0

]
〉 = 1

A1,2
1 = A(e1, e1, e2) = 〈

[
1 0

]
,

[
1
1

]
〉〈
[

2 1
]
,

[
1
0

]
〉〈
[

1 3
]
,

[
0
1

]
〉 = 6

Continuing in this manner, we can calculate the rest of our 8 components to arrive at the
component representation of A.
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A1,2
1 A1,2

2

A1,1
1 A1,1

2

A2,2
1 A2,2

2

A2,1
1 A2,1

2

6 3

2 1

6 3

2 1

Now, we compare this component representation of the tensor A = (u ⊗ v∗ ⊗ w∗) with
the Kronecker product u⊗ v∗ ⊗ w∗. Since the Kronecker product is associative, we have

u⊗ v∗ ⊗ w∗ =

[
1
1

]
⊗
[

2 1
]
⊗
[

1 3
]

=

[
2 1
2 1

]
⊗
[

1 3
]

=

[
2
[

1 3
]

1
[

1 3
]

2
[

1 3
]

1
[

1 3
] ]

=

[ [
2 6

] [
1 3

][
2 6

] [
1 3

] ] ,
which is identical to our construction of the components of A from above.

We can now represent all simple tensors as Kronecker products of vectors and covectors.
While this is a powerful tool, we must realize the distinction between tensors and higher
dimensional arrays. Every tensor has a component representation, and every collection of
indexed scalars corresponds to a tensor. However, decomposition of tensors into the tensor
product of vectors and covectors is not always possible, nor is it necessarily unique. For
example, because of the multilinearity of 〈, 〉 : V ∗ × V 7→ R we have

(2v ⊗ 1

2
v∗)(u∗, u) = 〈u∗, 2v〉〈1

2
v, u〉 = 〈u∗, v〉〈v, u〉 = (v ⊗ v∗)(u∗, u).

7 Conclusions and Further Research

While our discussion so far has been mathematically rich, we are simply studying the funda-
mentals of tensors and tensor algebra. In addition, we have left many important questions
unanswered. Now that we have realized tensors as higher dimensional arrays, can we come
up with an effective definition of tensor multiplication? We can extend the tensor product
to accept general tensors as inputs, however this results in a higher order tensor. If we have
a suitable notion of tensor multiplication, can we decompose tensors into pieces which have
“nice” properties? Are there useful definitions of the determinant, trace, or eigenvalues?
These question have complicated answers, as for example there are multiple distinct notions
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of eigenvalues for higher dimensional tensors. While we do not cover these questions in the
context of this paper, relevant papers can be found in the references.

The logical next step for those who are interested is to study contractions of tensors.
Contractions act as linear functions taking tensors of order (p, q) to tensors of order (p −
1, q− 1). However, in the study of contractions we expand our definition of tensors as linear
functions

T : V ∗ × · · · × V ∗ × V × · · · × V 7→ U

for some vector space U. Naturally, tensors become significantly more complicated when
working with them in this context, however we can use this definition to develop a richer
structure and understanding of tensors.

After establishing a strong mathematical understanding of tensors, one is free to explore
the countless applications in both pure and applied fields in mathematics. While tensors are
consistently used in the mathematical sciences, I am particularly interested in using them
to understand hypergraphs. Just as we have expanded matrices into higher dimensions,
we can realize hypergraphs (graphs which have multiple types of edges) as tensors. This
field of study is currently used to analyze monumental data sets, such as social network
graphs. For example, hypergraphs are used to study social network data because there
can simultaneously exist many different relationships between two people. I can be Bob’s
roommate, friend, coworker, and fellow student, or we can live in the same geographical
location, have the same hair color, or share economic status. Bob and I can share any
subset of the above relations, and if we represent our relationship as a graph with Bob and
I both occupying vertices, each of these relationships require their own type of edge. Such a
hypergraph has an adjacency tensor, just as regular graphs have adjacency matrices, which
is used to calculate and understand certain properties of the hypergraph.

12



Sources

Sources listed in the descending order based on the frequency of use in the paper.

1. INTRODUCTION TO VECTORS AND TENSORS, Linear and Multilinear Algebra,
Volume 1. Ray M. Bowen, C.-C. Wang. Updated 2010.
(Freely available at: http://repository.tamu.edu/bitstream/handle/
1969.1/2502/IntroductionToVectorsAndTensorsVol1.pdf?s..)

2. Matrix Analysis for Scientists and Engineers, Alan J. Laub.
(Relevant chapter at http://www.siam.org/books/textbooks/OT91sample.pdf)

3. Notes on Tensor Products and the Exterior Algebra, K. Purbhoo. Updated 2008
(Lecture notes, available at http://www.math.uwaterloo.ca/ kpurbhoo/
spring2012-math245/tensor.pdf)

4. Linear Algebra via Exterior Products. Sergei Winitzki. Copyright 2002.

5. Tensor Spaces and Exterior Algebra. Takeo Yokonuma. English version translated 1991.

Further Research

7. Multilinear Algebra. Werner Greub. Springer, updated 2013.

8. Eigenvalues of the Adjacency Tensor on Products of Hypergraphs. Kelly J. Pearson,
Tan Zhang. October, 2012
http://www.m-hikari.com/ijcms/ijcms-2013/1-4-2013/pearsonIJCMS1-4-2013.pdf

13


	Introduction
	Dual Space
	Dual Basis

	Multilinear Functions
	Tensors
	Tensor Product
	Tensor Components
	Conclusions and Further Research

