Rational Canonical Form

Glenna Toomey
University of Puget Sound

May 2014

Table of Contents

Introduction
$\mathrm{k}[\mathrm{x}]$-modules

Matrix Representation of Cyclic Submodules

The Decomposition Theorem

Rational Canonical Form

Why do we need Rational Canonical Form?

Consider the matrix over \mathbb{R},

$$
A=\left(\begin{array}{cccc}
5 & 6 & 3 & 4 \\
-1 & 9 & 2 & 7 \\
4 & -2 & -8 & 10 \\
21 & -14 & 6 & 3
\end{array}\right)
$$

- This matrix has characteristic polynomial $x^{4}+9 x^{3}-97 x^{2}+567 x-9226$

Why do we need Rational Canonical Form?

Consider the matrix over \mathbb{R},

$$
A=\left(\begin{array}{cccc}
5 & 6 & 3 & 4 \\
-1 & 9 & 2 & 7 \\
4 & -2 & -8 & 10 \\
21 & -14 & 6 & 3
\end{array}\right)
$$

- This matrix has characteristic polynomial $x^{4}+9 x^{3}-97 x^{2}+567 x-9226$
- Can not find Jordan Canonical Form for this matrix.

What is Rational Canonical Form?

Recall that a companion matrix for a polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ is the matrix of the form:

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
0 & 0 & \ldots & 0 & -a_{3} \\
. & . & \ldots & . & . \\
. & \cdot & \ldots & . & . \\
0 & 0 & \ldots & 1 & -a_{n-1}
\end{array}\right)
$$

A matrix in Rational Canonical Form is a matrix of the form

$$
\left(\begin{array}{cccc}
C\left[f_{n}\right] & & & \\
& C\left[f_{n-1}\right] & & \\
& & \ddots & \\
& & & C\left[f_{1}\right]
\end{array}\right)
$$

Where $C\left[f_{i}\right]$ is a companion matrix for the polynomial f_{i}.
Furthermore, $f_{n}\left|f_{n-1}\right| \ldots \mid f_{1}$.

$\mathrm{k}[x]$-modules

Definition
Recall that a $k[x]$-module is a module with scalars from the ring $\mathrm{k}[\mathrm{x}]$ and scalar multiplication defined as follows:
Given $f(x) \in k[x], f(x) v=\sum_{i=0}^{n} a_{i} x^{i} v=\sum_{i=0}^{n} a_{i} T^{i}(v)=f(T)(v)$.

$\mathrm{k}[\mathrm{x}]$-modules

Definition
Recall that a $\mathrm{k}[\mathrm{x}]$-module is a module with scalars from the ring $\mathrm{k}[\mathrm{x}]$ and scalar multiplication defined as follows:
Given $f(x) \in k[x], f(x) v=\sum_{i=0}^{n} a_{i} x^{i} v=\sum_{i=0}^{n} a_{i} T^{i}(v)=f(T)(v)$.

- We can think of this as the module associated with the linear transformation T

Definition

Given an R-module, M, and $m \in M$, the annihilator of $m \in M$ is:

$$
\operatorname{ann}(m)=\{r \in R: r m=0\} .
$$

Theorem
Given a vector space V over a field F and a linear transformation $T: V \rightarrow V$, the $F[x]$-module, V^{T}, is a torsion module.

Definition

Given an R-module, M, and $m \in M$, the annihilator of $m \in M$ is:

$$
\operatorname{ann}(m)=\{r \in R: r m=0\} .
$$

Theorem
Given a vector space V over a field F and a linear transformation $T: V \rightarrow V$, the $F[x]-$ module, V^{\top}, is a torsion module.

Proof.
the set $\left\{v, T(v), T^{2}(v), \ldots, T^{n}(v)\right\}$ is linearly dependent since it contains $n+1$ vectors.
$g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in \operatorname{ann}(v)$

Definition

If M is an R-module, then a submodule N of M, denoted $N \subseteq M$ is an additive subgroup N of M closed under scalar multiplication. That is, $r n \in N$ for $n \in N$ and $r \in R$.

Definition

If M is an R-module, then a submodule N of M, denoted $N \subseteq M$ is an additive subgroup N of M closed under scalar multiplication. That is, $r n \in N$ for $n \in N$ and $r \in R$.

Theorem
Given a vector space V over a field F and a linear transformation, $T: V \rightarrow V$, a submodule W of the $F[x]$-module V^{T} is a T-invariant subspace. More specifically, $T(W) \subseteq W$.

The Minimal Polynomial and $k[x]$-modules

Definition
The annihilator of a module, M, is:

$$
\operatorname{ann}(M)=\{r \in R: r m=0 \text { for all } m \in M\}
$$

Definition
The Minimal Polynomial of a matrix A, denoted $m_{A}(x)$, is the unique monic polynomial of least degree such that $m_{A}(A)=0$.

The Minimal Polynomial and $\mathrm{k}[\mathrm{x}]$-modules

- These two terms are related for $\mathrm{k}[\mathrm{x}]$-modules

The Minimal Polynomial and $\mathrm{k}[\mathrm{x}]$-modules

- These two terms are related for $\mathrm{k}[\mathrm{x}]$-modules

$$
\begin{aligned}
\operatorname{ann}\left(V^{\top}\right) & =\{f(x) \in F[x] \mid f(x) v=0 \text { for all } v \in V\} \\
& =\{f(x) \in F[x] \mid f(T) v=0 \text { for all } v \in V\} \\
& =\{f(x) \in F[x] \mid f(T)=0\}
\end{aligned}
$$

- We can use these terms synonymously

Matrix Representation of Cyclic Submodules

Definition

Given an R-module, M, and an element $m \in M$, the cyclic submodule generated by m is

$$
\langle m\rangle=\{r m: r \in R\}
$$

Matrix Representation of Cyclic Submodules

Definition

Given an R-module, M, and an element $m \in M$, the cyclic submodule generated by m is

$$
\langle m\rangle=\{r m: r \in R\}
$$

- Since a submodule, W, of a $\mathrm{k}[\mathrm{x}]$-module is T-invariant, we can examine the matrix representation $\left.T\right|_{W}$

Matrix Representation of Cyclic Submodules

Definition

Given an R-module, M, and an element $m \in M$, the cyclic submodule generated by m is

$$
\langle m\rangle=\{r m: r \in R\}
$$

- Since a submodule, W, of a $\mathrm{k}[\mathrm{x}]$-module is T-invariant, we can examine the matrix representation $\left.T\right|_{W}$
- Let us look at T restricted to cyclic submodules of $k[x]$-modules

Theorem

Let $W=\langle w\rangle$ be a cyclic submodule of the $F[x]$-module V^{T} and $\operatorname{deg}\left(m_{T} \mid W(x)\right)=n$. Then the set
$\left\{T^{n-1}(w), T^{n-2}(w), \ldots, T(w), w\right\}$ is a basis for W.
Proof.

- By the division algorithm, we can write any polynomial $f(x)=m(x) q(x)+r(x)$ where $m(x)$ is the minimal polynomial of $\left.T\right|_{W}$ with $\operatorname{deg}=n$ and $\operatorname{deg}(r(x))<n$
- so, for any $w_{1} \in W$,

$$
\begin{aligned}
w_{1} & =r(x) w \\
& =r(T) w \\
& =a_{n-1} T^{n-1}(w)+a_{n-2} T^{n-2}(w)+\ldots+a_{0}(w)
\end{aligned}
$$

Proof cont.

- Consider the relation of linear dependence: $a_{n-1} T^{n-1}(w)+a_{n-2} T^{n-2}(w)+\ldots+a_{0}(w)=0$
- $a_{n-1} T^{n-1}(w)+a_{n-2} T^{n-2}(w)+\ldots+a_{0}(w)=p(x) w$, $\operatorname{deg}(p(x))<\operatorname{deg}(m(x))$
- Now consider the matrix representation of $\left.T\right|_{w}$ relative to the basis $\left\{w, T(w), \ldots, T^{n-1}(w)\right\}$
- Now consider the matrix representation of $\left.T\right|_{w}$ relative to the basis $\left\{w, T(w), \ldots, T^{n-1}(w)\right\}$

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
0 & 0 & \ldots & 0 & -a_{3} \\
. & . & \ldots & . & . \\
. & . & \ldots & . & . \\
0 & 0 & \ldots & 1 & -a_{n-1}
\end{array}\right)
$$

Primary Decomposition

Theorem
Let M be a finitely generated torsion module over a principal ideal domain, D, and let $\operatorname{ann}(M)=\langle u\rangle, u=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}$ where each p_{i} is prime in D. Then

$$
M=M_{p_{1}} \oplus M_{p_{2}} \oplus \ldots \oplus M_{p_{n}}
$$

where $M_{p_{i}}=\left\{v \in V: p_{i}^{e} v=0\right\}$.

Cyclic Decomposition

Theorem

Let M be a primary, finitely generated torsion module over a principle ideal domain, R with ann $(M)=\left\langle p^{e}\right\rangle$, then M is the direct sum,

$$
M=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}\right\rangle \oplus \ldots \oplus\left\langle v_{n}\right\rangle
$$

where $\operatorname{ann}\left(\left\langle v_{i}\right\rangle\right)=p^{e_{i}}$ and the terms in each cyclic decomposition can be arranged such that

$$
\operatorname{ann}\left(v_{1}\right) \supseteq \operatorname{ann}\left(v_{2}\right) \supseteq \ldots \supseteq \operatorname{ann}\left(v_{n}\right) .
$$

Therefore, we can write:

$$
\begin{aligned}
& V^{T}=M_{p_{1}} \oplus M_{p_{2}} \oplus \ldots M_{p_{n}}= \\
& \left(\left\langle v_{1,1}\right\rangle \oplus\left\langle v_{1,2}\right\rangle \oplus \ldots \oplus\left\langle v_{1, k_{1}}\right\rangle\right) \oplus \ldots \oplus\left(\left\langle v_{n, 1}\right\rangle \oplus \ldots \oplus\left\langle v_{n, k_{n}}\right\rangle\right)
\end{aligned}
$$

Therefore, we can write:

$$
\begin{aligned}
& V^{T}=M_{p_{1}} \oplus M_{p_{2}} \oplus \ldots M_{p_{n}}= \\
& \left(\left\langle v_{1,1}\right\rangle \oplus\left\langle v_{1,2}\right\rangle \oplus \ldots \oplus\left\langle v_{1, k_{1}}\right\rangle\right) \oplus \ldots \oplus\left(\left\langle v_{n, 1}\right\rangle \oplus \ldots \oplus\left\langle v_{n, k_{n}}\right\rangle\right) \\
& \quad \quad \operatorname{ann}\left(\left\langle v_{i, j}\right\rangle\right)=p_{i}^{e_{i, j}}
\end{aligned}
$$

Therefore, we can write:

$$
\begin{aligned}
& V^{T}=M_{p_{1}} \oplus M_{p_{2}} \oplus \ldots M_{p_{n}}= \\
& \left(\left\langle v_{1,1}\right\rangle \oplus\left\langle v_{1,2}\right\rangle \oplus \ldots \oplus\left\langle v_{1, k_{1}}\right\rangle\right) \oplus \ldots \oplus\left(\left\langle v_{n, 1}\right\rangle \oplus \ldots \oplus\left\langle v_{n, k_{n}}\right\rangle\right) \\
& \quad \text { ann }\left(\left\langle v_{i, j}\right\rangle\right)=p_{i}^{e_{i, j}} \\
& \quad p_{i}^{e_{i}}=p_{i}^{e_{i, 1}} \geq p_{i}^{e_{i, 2}} \geq \ldots \geq p_{i}^{e_{i, k_{i}}}
\end{aligned}
$$

The Invariant Factor Decomposition

- We can rearange these cyclic subspaces into the following groups

$$
\begin{aligned}
& W_{1}=\left\langle v_{1,1}\right\rangle \oplus\left\langle v_{2,1}\right\rangle \oplus \ldots \oplus\left\langle v_{n, 1}\right\rangle \\
& W_{2}=\left\langle v_{1,2}\right\rangle \oplus\left\langle v_{2,2}\right\rangle \oplus \ldots \oplus\left\langle v_{n, 2}\right\rangle
\end{aligned}
$$

- each W_{i} is cyclic with order $p^{e_{1, i}} p^{e_{2, i}} \ldots p^{e_{j, i}}=d_{i}$
- Each d_{i} is called an invariant factor of V^{T}
- Notice that since $d_{1}=p_{1}^{e_{1,1}} p_{2}^{e_{2,1}} \ldots p_{n}^{e_{n, 1}}, d_{2}=p_{1}^{e_{1,2}} p_{2}^{e_{2,2}} \ldots p_{n}^{e_{n, 2}}, \ldots$ We can conclude that $d_{n}\left|d_{n-1}\right| \ldots \mid d_{1}$

Example

Suppose that W is a torsion module with order $p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}}$

- $W=M_{p_{1}} \oplus M_{p_{2}} \oplus M_{p_{3}}$
- Suppose that $M_{p_{1}} \oplus M_{p_{2}} \oplus M_{p_{3}}=$ $\left(\left\langle v_{1,1}\right\rangle \oplus\left\langle v_{1,2}\right\rangle \oplus\left\langle v_{1,3}\right\rangle\right) \oplus\left(\left\langle v_{2,1}\right\rangle \oplus\left\langle v_{2,2}\right\rangle\right) \oplus\left(\left\langle v_{3,1}\right\rangle\right)$
- Then the $\left\langle p_{1}^{e_{1}}\right\rangle=\operatorname{ann}\left(v_{1,1}\right) \supseteq \operatorname{ann}\left(v_{1,2}\right) \supseteq \operatorname{ann}\left(v_{1,3}\right),\left\langle p_{2}^{e_{2}}\right\rangle=$ $\operatorname{ann}\left(v_{2,1}\right) \supseteq \operatorname{ann}\left(v_{2,2}\right), p_{3}^{e_{3}}=\operatorname{ann}\left(v_{3,1}\right)$.
- $W=\left(\left\langle v_{1,1}\right\rangle \oplus\left\langle v_{2,1}\right\rangle \oplus\left\langle v_{3,1}\right\rangle\right) \oplus\left(\left\langle v_{1,2}\right\rangle \oplus\left\langle v_{2,2}\right\rangle\right) \oplus\left(\left\langle v_{1,3}\right\rangle\right)$
$-d_{1}=p_{1}^{e_{1,1}} p_{2}^{e_{2,1}} p_{3}^{e_{3,1}}=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}}, d_{2}=p_{1}^{e_{1,2}} p_{2}^{e_{2,2}}$, and $d_{3}=p_{1}^{e_{1,3}}$

Rational Canonical Form

- Given any matrix, we can realize this matrix as the linear transformation, T, associated with the $k[x]-$ module, V^{T}

Rational Canonical Form

- Given any matrix, we can realize this matrix as the linear transformation, T, associated with the $k[x]$ - module, V^{T}
- The first invariant factor will be the minimum polynomial

Rational Canonical Form

- Given any matrix, we can realize this matrix as the linear transformation, T, associated with the $k[x]$ - module, V^{T}
- The first invariant factor will be the minimum polynomial
- Each invariant factor will be a factor of the minimum polynomial

Example

Consider the matrix,

$$
\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & -4 & -1 \\
2 & 4 & 0
\end{array}\right)
$$

Example

Consider the matrix,

$$
\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & -4 & -1 \\
2 & 4 & 0
\end{array}\right)
$$

- characteristic polynomial is $x^{3}+6 x^{2}+12 x+8=(x+2)^{3}$

Example

Consider the matrix,

$$
\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & -4 & -1 \\
2 & 4 & 0
\end{array}\right)
$$

- characteristic polynomial is $x^{3}+6 x^{2}+12 x+8=(x+2)^{3}$
- minimal polynomial is $(x+2)^{2}$ since $(A+2 I)^{2}=0$
- invariant factors are $(x+2)^{2}$ and $x+2$

Example cont.

Therefore, the rational canonical form of this matrix is:

$$
\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 0 & -4 \\
0 & 1 & -4
\end{array}\right)
$$

