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1 Introduction

In mathematics, complete classification of structures, such as groups and rings, is often a
primary goal. Linear transformations are no exception to this. Certain canonical forms
exist to classify linear transformations, therefore creating a unique representative of linear
transformations in the same similarity class. Diagonal representation is of course one of the
simplest examples of a canonical form. However, not every matrix is diagonalizable. Jordan
Canonical Form is yet another common matrix representation, but as we will soon see, this
representation may not be achieved for every matrix.

Consider the matrix over R,

A =


5 6 3 4
−1 9 2 7
4 −2 −8 10
21 −14 6 3


The characteristic polynomial for this matrix is x4 + 9x3 − 97x2 + 567x − 9226, which can
not be factored into linear factors over R and thus the eigenvalues for this matrix can not
be found. Therefore, it is impossible to put this matrix in Jordan Canonical Form. Thus,
Jordan Canonical Form can only be achieved for matrices in an algebraically closed field,
which leads us to a second canonical form: that is, Rational Canonical Form.

2 Modules

Most proofs of the existence of Rational Canonical Form rely on the module associated with
a linear operator, that is, the F [x]-module. Before examining this specific type, let us briefly
explore some properties of general modules.

2.1 The Basics

The notion of a module extends easily from the concept of a vector space. To make this
extension, we need only alter our idea the scalars associated with a vector space. Let us
present this idea a bit more formally.
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Definition. Let R be a commutative ring. An R-module is an additive abelian group M
equipped with scalr multiplication RxM →M , denoted by

(r,m)→ rm

such that the following axioms hold for all m,m′ ∈M and all r, r′ ∈ R.
(i) r(m+m′) = rm+ rm′

(ii) (r + r′)m = rm+ r′m
(iii) (rr′)m = r(r′m)
(iv) 1m = m.

As we can see from this definition, the only real difference between a vector space and a
module is that a module admits scalar multiplication from elements in a ring instead of a field.
Because these structures are so similar, it is not surprising that they share similar properties.
Just as we can have morphisms between vector spaces, we can also have morphisms between
modules.

Definition. Let M and N be R-modules. Then a map f : M → N is an R-map if for
m,m′ ∈M and r ∈ R and

1.f(m+m′) = f(m) + f(m′)
2.f(rm) = rf(m)

Since a module is of course an abelian group, we can also relate properties of groups to
modules through the isomorphism theorems. The three isomorphism theorems that exist
for groups correspond nearly identically to isomorphism theorems of modules. Instead of
exploring all three of the theorems, we will only state and prove the first since it will later
be applicable to our exploration of cyclic submodules.

Theorem 1. If f : M → N is an R-map of modules, then there is an R-isomorphism

φ : M/ker(f)→ im(f)

given by

φ : m+ ker(f)→ f(m).

Proof. Let us consider M and N as abelian groups. The First Isomorphism Theorem of
Groups tells us that φ : M/ker(f) → im(f) is an isomorphism of groups. However, we
have the added operation of scalar multiplication, so we must show that φ(r(m+ ker(f)) =
rφ(m+ (ker(f)).

φ(r(m+ ker(f))) =φ(rm+ ker(f))

=f(rm)

=rf(m) since f is an R−map
=rφ(m+ ker(f))

Thus, φ is an R-isomorphism.
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Now, let us define two more important properties of modules which will be used later in
our study of cyclic modules and F [x]-modules.

Definition. Given an R-module, M , and m ∈M , the annihilator of m ∈M is:

ann(m) = {r ∈ R : rm = 0}.

Furthermore, the annihilator of M is:

ann(M) = {r ∈ R : rm = 0 for all m ∈M}.

Definition. Given an R-module, M , an element m ∈M is a torsion element if ann(m) 6=
0. Furthermore, an R-module is a torsion module if for all elements m ∈M , m is a torsion
element.

2.2 Submodules

Definition. If M is an R-module, then a submodule N of M , denoted N ⊆ M is an
additive subgroup N of M closed under scalar multiplication. That is, rn ∈ N for n ∈ N
and r ∈ R.

Now, let us present an important type of submodule. Though the significance of this
specific submodule may not be clear now, we will come back to this concept shortly.

Definition. Given an R-module, M , and an element m ∈ M , the cyclic submodule
generated by m is

〈m〉 = {rm : r ∈ R}

Proposition 2. An R-module, M , is cyclic if and only if M ∼= R/I where I is an ideal of
R.

Proof. We will prove this theorem using the First Isomorphism Theorem of Modules. Sup-
pose M is a cyclic module. Then we know that 〈m〉 = M for some m ∈ M . Let us define
a map f : R → M by f(r) = rm. This map is surjective since given any element x ∈ M ,
x = rm since M is cyclic. Furthermore, the ker(f) = {r ∈ R : rm = 0} = ann(m).
Therefore, the ker(f) is an ideal of R and M ∼= R/I.

2.3 F[x]-Modules

We now have the tools to examine a specific type of module which will later be applied to
the Rational Canonical Form of a matrix, that is, the F [x]-module. Because scalars of a
module do not need to come from a field, nothing prevents us from defining a module over
a ring of polynomials. Let us formalize this idea.

Definition. Let V be a vector space over a field F and let T : V → V be a linear transforma-
tion. Then we can extend this vector space to a module over F [x] with scalar multiplication
defined as follows: Given f(x) = anx

n + an−1x
n−1 + ...+ a1x+ a0 ∈ F [x] and v ∈ V ,
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f(x)v =
n∑

i=1

aix
iv =

n∑
i=1

aiT
i(v) = f(T )(v).

. This is called an F [x]-module which we will denote V T .

Now, let us relate the idea of a torsion module to these F [x]-modules.

Proposition 3. Given a vector space V over a field F and a linear transformation T : V →
V , the F [x]-module, V T , is a torsion module.

Proof. Let V be an n-dimensional vector space. Then for any v ∈ V , the set {v, T (v), T 2(v), ..., T n(v)}
is linearly dependent since it contains n+1 vectors. Therefore, there exist scalars a0, a1, ..., an

not all equal to zero such that
n∑

i=0

aiT
i = 0. Therefore, the nonzero polynomial g(x) =

n∑
i=1

aix
i

∈ ann(v) and v is a torsion element.

Now, let us consider submodules of an F [x]-module. We know that a submodule must
be closed under scalar multiplication. However, in the case of an F [x]-module, scalar multi-
plication depends on a linear transformation, T . Thus, we can conclude that a submodule
of an F [x]-module must be T -invariant.

Proposition 4. Given a vector space V over a field F and a linear transformation, T :
V → V , a submodule W of the F [x]-module V T is a T -invariant subspace. More specifically,
T (W ) ⊆ W .

3 Minimal Polynomials

Before examining matrix representations of F [x]-modules, we must present one more concept:
the minimal polynomial. As we will later see, minimal polynomials play an important roll
in finding the Rational Canonical Form of a matrix.

Definition. The minimal polynomial of a matrix A, denoted mA(x), is the unique monic
polynomial of least degree such that mA(A) = 0.

Let us examine this notion in the context of an F [x]-module. Let V be a vector space
over a field F and let T : V → V be a linear transformation. We know that the minimum
polynomial for T is the polynomial mT (x) such that mT (T ) = 0. However,

ann(V T ) ={f(x) ∈ F [x]|f(x)v = 0 for all v ∈ V }
={f(x) ∈ F [x]|f(T )v = 0 for all v ∈ V }
={f(x) ∈ F [x]|f(T ) = 0}

But since F is a field, mT (x) divides any polynomial with T as a zero so {f(x) ∈ F [x] :
f(T ) = 0} = 〈mt(x)〉. Therefore, given a vector space V over a field F and a linear
transformation T : V → V , we can equivalently define the minimal polynomial of T to be
the generator for ann(V T ). We will return to this result in our analysis of the Decomposition
Theorems of modules over Principal Ideal Domains.
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4 Matrix Representations of Cyclic Submodules

Now we are ready to further explore cyclic submodules of an F [x]-module, V T . We will
begin this section with a simple, seemingly unmotivated definition. The motivation for this
definition will become clear later in this section.

Definition. Given a polynomial p(x) = anx
n + an−1x

n−1 + ... + a1x + a0, its companion
matrix, denoted C(p(x)) is the n× n matrix:

0 0 ... 0 −a0
1 0 ... 0 −a1
0 1 ... 0 −a2
0 0 ... 0 −a3
. . ... . .
. . ... . .
0 0 ... 1 −an−1


Now, let us return to the concept of a cyclic submodule of a F [x]-module, V T . Suppose

W = 〈w〉 is a cyclic submodule of V T . We have already proven that W is T -invariant,
so it makes sense to examine the linear transformation T |W . Let mT |W (x) be the minimal
polynomial of T |W with degree n and consider w1 ∈ 〈w〉.

w1 =f(x)w for some f(x) ∈ F [x]

=(m(x)q(x) + r(x))w for some q(x), r(x) ∈ F [x] where deg(r(x)) < n

=(m(x)q(x))w + r(x)w

=0 + r(x)w

Let us interpret this result. We have just shown that any vector w1 ∈ 〈w〉 can be written
as the product of a polynomial of degree less than n = deg(mT |W (x)) and w. Thus, for any
vector w1 ∈ 〈w〉,

w1 =r(x)w

=r(T )w

=an−1T
n−1(w) + an−2T

n−2(w) + ...+ a0(v).

But this is simply a linear combination of the set of n vectors, {T n−1(v), T n−2(v), ..., T (v), v}.
Thus, this set spans 〈w〉. This motivates our next theorem.

Theorem 5. Let W = 〈w〉 be a cyclic submodule of the F [x]-module V T and deg(mT |W (x)) =
n. Then the set {T n−1(w), T n−2(w), ..., T (w), w} is a basis for W .

Proof. We have already shown that this set spans V , so we only must show that this set is
linearly independent. Let Let a0v + a1T (w) + ... + an−1T

n−1(w) = 0 be a relation of linear
dependence. We know that
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a0v + a1T (w) + ...+ an−1T
n−1(w) = p(T )w = p(x)w

where p(x) ∈ F [x]. However, since

deg(p(x)) = n− 1 < n = deg(mT |W (x))

p(x) must be the zero polynomial and a0, a1, ..., an must all equal zero, making the relation
of linear dependence trivial. Therefore, this set is a basis for for W .

Now, let us consider the matrix representation of T |W relative to this basis. Since T (w) =
0v + 1T (w) + 0T 2(w) + ...+ 0T n−1(w), the first column of our matrix is:

0
1
0
0
.
.
.
0


Likewise, since T (T (v)) = T 2(v) = 0v + 0T (v) + 1T 2(v) + 0T 3(v) + ... + 0T n−1(v), the

second column of our matrix is 

0
0
1
0
.
.
.
0


This process continues until we get to the coordinatization of our last basis vector,

T n−1(w). T (T n−1(w)) = T n(w), but since 0 = mT (T )w = T n(w) +
n−1∑
i=1

aiT
i(w), T n(w) =

−
n−1∑
i=1

aiT
i(w) where each ai is a coefficient of mT (x). Therefore, the final column vector of

our matrix representation is 
−a0
−a1
.
.
.

−an−1


Therefore, every cyclic submodule W of V T has a matrix representation that is the

companion matrix of mT |W (x).
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5 Modules over Principal Ideal Domains

We will now explore the properties of modules over Principal Ideal Domains. More specifi-
cally, we will show that since F [x] is a principal ideal domain, an F [x]-module can be written
as a direct sum of cyclic submodulesthrough a series of decomposition theorems. We can then
employ the matrix representations of cyclic submodules to construct the rational canonical
form of a matrix. First, let us begin with a definition.

Definition. Given an R-module M with submodules S and T , M is the direct sum of S
and T , denoted M = S ⊕ T if:

(i) S ∩ T = 0
(ii) For each m ∈M , m can be represented uniquely as m = s+ t where s ∈ S
and t ∈ T

We will now state a theorem which we will need later in our invariant factor decomposition
of a module.1

Theorem 6. M be an R-module and
(i) Let u1, ..., un be nonzero elements in M with annihilators, a1, a2, ..., an, that are rela-

tively prime. Then

〈u1 + u2 + ...+ un〉 = 〈u1〉 ⊕ 〈u2〉 ⊕ ...⊕ 〈un〉

(ii) If v ∈M has annihilator 〈a1a2...an〉, then v can be written in the form v = a1 + a2 +
...+ an. Furthermore,

〈v〉 = 〈u1〉 ⊕ 〈u2〉 ⊕ ...⊕ 〈un〉

Thus, the direct sum of cyclic modules with relatively prime generators of annihilators is
another cyclic module. We will need this result later in our Invariant Factor Decomposition.

5.1 The Decomposition Theorems

Theorem 7. Let M be a finitely generated torsion module over a principal ideal domain, D,
and let ann(M) = 〈u〉 = pe11 p

e2
2 ...p

en
n where each pi is prime in D. Then

M = Mp1 ⊕Mp2 ⊕ ...⊕Mpn

where Mpi = {v ∈ V : peiv = 0}.

Proof. For notational convenience, let ui = u/peii and define uiM = {uiv : v ∈M}. We wish
to show that uiM = Mpi . Let x ∈ uiM .

peii x = peii uiv where v ∈M
= uv

1For the proof of this theorem, see Roman,126
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But uv = 0 since u annihilates all elements of M . Thus, x ∈Mpi and uiM ⊆Mpi . To show
the opposite inclusion, suppose y ∈ Mpi . Since ui and peii are relatively prime, there exist
a, b ∈ D such that aui + bpeii = 1. So,

y = 1y =(aui + bpeii )y

=auiy + bpeii y

=auiy + b0

=auiy ∈ uiM

Therefore, Mpi = uiM . Now, we will show that for any x ∈ M , x =
n∑

i=1

uiM . We know

that u1, u2, ..., un are relatively prime and thus there exist elements of D, a1, a2, ..., an such
that 1 = a1u1 + a2u2 + ...+ anun. Therefore,

x = 1x = (a1u1 + a2u2 + ...+ anun) =
n∑

i=1

(aiui)x =
n∑

i=1

ui(aix).

Therefore, x = y1+y2+ ...+yn where yi ∈ uiM . Furthermore, since the order of uiM divides
peii and the peii ’s are relatively prime, the intersection of the uiM ’s is trivial and thus

M = u1M ⊕ u2M ⊕ ...⊕ unM = Mp1 ⊕Mp2 ⊕ ...⊕Mpn

Another decomposition which we will state, but not prove, allows us to even further
decompose M into cyclic submodules.2

Theorem 8. Let M be a primary, finitely generated torsion module over a principle ideal
domain, R with ann(M) = 〈pe〉, then M is the direct sum,

M = 〈v1〉 ⊕ 〈v2〉 ⊕ ...⊕ 〈vn〉

where ann(〈vi〉) = pei and the terms in each cyclic decomposition can be arranged such that

ann(v1) ⊇ ann(v2) ⊇ ... ⊇ ann(vn).

From these results, we can now deduce that given a vector space V , a field F , and a
linear transformation T : V → V , the F [x]-module V T can be represented as

V T = Mp1 ⊕Mp2 ⊕ ... Mpn = (〈v1,1〉 ⊕ 〈v1,2〉 ⊕ ...⊕ 〈v1,k1〉)⊕ ...⊕ (〈vn,1〉 ⊕ ...⊕ 〈vn,kn〉)

Where ann(〈vi,j〉) = 〈pei,ji 〉 and the terms of each cyclic decomposition of Mpi can be
ordered such that

ann(〈vi,1〉) ⊇ ann(〈vi,2〉) ⊇ ... ⊇ ann(〈vi,ki〉)

Equivelently, we can say that p
ei,1
i ≥ p

ei,2
i ≥ ... ≥ p

ei,ki
i or ei = ei,1 ≥ ei,2 ≥ ... ≥ ei,ki .

2For the proof of this theorem, see Roman, 131
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5.2 The Invariant Factor Decomposition

We know from Theorem 6 that the direct sum of cyclic modules with relatively prime
annihilaters is another cyclic module. Thus we will reorder the above decomposition into
the following groups:

W1 = 〈v1,1〉 ⊕ 〈v2,1〉 ⊕ ...⊕ 〈vn,1〉
W2 = 〈v1,2〉 ⊕ 〈v2,2〉 ⊕ ...⊕ 〈vn,2〉

...

Since each pi is relatively prime, by Theorem 6, we know that each Wi is a cyclic
submodule with order di = pe1,ipe2,i ...pej,i . Therefore,

V T = W1 ⊕W2 ⊕ ...⊕Wn

Where each Wi = F [x]/〈di〉. Each di is called an invariant factor of V T . Notice that
dn|dn−1|...|d1 since as i increases, di is built on subsequently lower powers of the primes
p1, p2, ..., pn.

Example 1. Suppose that W is cyclic submodule with ann = pe11 p
e2
2 p

e3
3 and that W =

Mp1 ⊕Mp2 ⊕Mp3 . Each of these primary components can further be decomposed into cyclic
module. Let us suppose that

Mp1 ⊕Mp2 ⊕Mp3 = (〈v1,1〉 ⊕ 〈v1,2〉 ⊕ 〈v1,3〉)⊕ (〈v2,1〉 ⊕ 〈v2,2〉)⊕ (〈v3,1〉)

Then the 〈pe1〉 = ann(v1,1) ⊇ ann(v1,2) ⊇ ann(v1,3), 〈pe2〉 = ann(v2,1) ⊇ ann(v2,2), p
e3 =

ann(v3,1).
We are free to rearange the direct sum of these cyclic subspaces, so for the invariant

factor decomposition, we reorder this direct sum in the following way:

W = (〈v1,1〉 ⊕ 〈v2,1〉 ⊕ 〈v3,1〉)⊕ (〈v1,2〉 ⊕ 〈v2,2〉)⊕ (〈v1,3〉)

Our new cyclic subspaces are:
D1 = 〈v1,1〉 ⊕ 〈v2,1〉 ⊕ 〈v3,1〉
D2 = 〈v1,2〉 ⊕ 〈v2,2〉
D3 = 〈v1,3〉

and our invaraint factors are: d1 = pe1,1pe2,1pe3,1 = pe1pe2pe3 , d2 = pe1,2pe2,2 , and d3 = pe1,3 .

6 Rational Canonical Form

We are finally ready to state our main result. We have determined that given any vector
space, V and any linear transformation T : V → V , the F [x]-module V T can be decomposed
into cyclic subspaces such that

V T = W1 ⊕W2 ⊕ ...⊕Wn.
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Where each Wi = F [x]/〈di〉. From our results in Matrix Representations of Cyclic
Submodules, we know that we can create a matrix representation of T |Wi

that is C(di).
Thus, given any m × n matrix, M , we can consider M as a linear transformation, T , that
is the linear operator associated with the F [x]-module, V T . We can thus create matrix
representations of T restricted to the cyclic submodules W1,W2, ...,Wn. Thus, we can create
a matrix representation of T relative to a basis that looks like:


C[dn]

C[dn−1]
. . .

C[d1]



Example 2. Consider the matrix1, −2 0 0
−1 −4 −1
2 4 0


We can easily calculate that the characteristic polynomial of this matrix is x3 + 6x2 +

12x + 8 = (x + 2)3. (A + 2I) 6= 0, but (A + 2I)2 = 0. Thus, the minimal polynomial for
the matrix is (x + 2)2. We know that the largest invariant factor is simply the minimal
polynomial. Furthermore, we know that the size of our canonical form matrix must be 3×3,
and that our invariant factors must divide (x + 2)3. Thus, there are two invariant factors:
(x+ 2)2 = x2 + 4x+ 4 and x+ 2. Therefore, the rational canonical form of the matrix is:−2 0 0

0 0 −4
0 1 −4


7 Conclusion

To summarize our results, given any mxn matrix A, we can consider the F [x] module for the
vector space V of dimension n defined on A and thus achieve a rational canonical form for
A. This form can be realised through finding the minimal polynomial for A, examining the
invariant factors that divide this polynomial, and then constructing the companion matrices
for these factors. Unlike diagonalization or Jordan Canonical Form, a Rational Canonical
Form can be constructed for any matrix. Therefore, we have found a canonical representation
for all matrices within the same equivalence class and achieved our goal of the classification
of all linear transformations.

1Coley,Ian, http://www.math.ucla.edu/ iacoley/
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