Third-Order Tensor Decompositions and Their Application in Quantum Chemistry

Tyler Ueltschi April 17, 2014

April 17, 2014

Table of Contents

(1) Background
(2) 3rd-Order Tensor Decompositions

- Modal Operations
- Higher Order SVD (HOSVD)
- CANDECOMP/PARAFAC Decomposition
(3) Application to Quantum Chemistry
- The Problem
- A Rotation Matrix
- Rotation by CP Decomposition

4 References

Table of Contents

(1) Background
(2) 3rd-Order Tensor Decompositions

- Modal Operations
- Higher Order SVD (HOSVD)
- CANDECOMP/PARAFAC Decomposition
(3) Application to Quantum Chemistry
- The Problem
- A Rotation Matrix
- Rotation by CP Decomposition
(4) References

3rd-Order Tensor

Definition: 3rd-Order Tensor
 An array of $n \times m$ matrices

3rd-Order Tensor

- 3rd-Order Tensor Definition

Fibers:

Fig. 2.1 Fibers of a 3rd-order tensor.

${ }^{a}$ From Bader and Kolda 2009

3rd-Order Tensor

- 3rd-Order Tensor Definition
- Fibers

Slices:

Fig. 2.2 Slices of a 3rd-order tensor.
${ }^{\text {a }}$ From Bader and Kolda 2009

Table of Contents

Background

(2) 3rd-Order Tensor Decompositions

- Modal Operations
- Higher Order SVD (HOSVD)
- CANDECOMP/PARAFAC Decomposition
(3) Application to Quantum Chemistry
- The Problem
- A Rotation Matrix
- Rotation by CP Decomposition

4 References

Modal Operations

- Modal Operations take Tensors to Matrices

Example: Modal Unfolding

$$
\mathcal{A}_{1}=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right] \quad \mathcal{A}_{2}=\left[\begin{array}{llll}
13 & 14 & 15 & 16 \\
17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24
\end{array}\right]
$$

Modal Operations

- Modal Operations take Tensors to Matrices

Example: Modal Unfolding

$$
\begin{gathered}
\mathcal{A}_{1}=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right] \quad \mathcal{A}_{2}=\left[\begin{array}{llllll}
13 & 14 & 15 & 16 \\
17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24
\end{array}\right] \\
\mathcal{A}_{(1)}=\left[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 13 & 14 & 15 & 16 \\
5 & 6 & 7 & 8 & 17 & 18 & 19 & 20 \\
9 & 10 & 11 & 12 & 21 & 22 & 23 & 24
\end{array}\right]
\end{gathered}
$$

Modal Operations

- Modal Operations take Tensors to Matrices

Example: Modal Unfolding

$$
\begin{gathered}
\mathcal{A}_{1}=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right] \quad \mathcal{A}_{2}=\left[\begin{array}{llll}
13 & 14 & 15 & 16 \\
17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24
\end{array}\right] \\
\mathcal{A}_{(2)}=\left[\begin{array}{cccccc}
1 & 5 & 9 & 13 & 17 & 21 \\
2 & 6 & 10 & 14 & 18 & 22 \\
3 & 7 & 11 & 15 & 19 & 23 \\
4 & 8 & 12 & 16 & 20 & 24
\end{array}\right]
\end{gathered}
$$

Modal Operations

- Modal Operations take Tensors to Matrices

Example: Modal Unfolding

$$
\left.\begin{array}{c}
\mathcal{A}_{1}=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right] \quad \mathcal{A}_{2}=\left[\begin{array}{lllll}
13 & 14 & 15 & 16 \\
17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24
\end{array}\right] \\
\mathcal{A}_{(3)}=\left[\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22
\end{array} 23\right. \\
24
\end{array}\right] .
$$

Modal Operations

- Modal Operations take Tensors to Matrices
- Modal Unfolding Example

Definition: Modal Product

The modal product, denoted \times_{k}, of a 3rd-order tensor
$\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and a matrix $\mathbf{U} \in \mathbb{R}^{J \times n_{k}}$, where J is any integer, is the product of modal unfolding $\mathcal{A}_{(k)}$ with \mathbf{U}. Such that

$$
\mathbf{B}=\mathbf{U} \mathcal{A}_{(k)}=\mathcal{A} \times_{k} \mathbf{U}
$$

Modal Product

- Modal Operations take Tensors to Matrices
- Modal Unfolding Example
- Modal Product $A \times_{1} \mathbf{U}=\mathbf{U} A_{(1)}$

Example: Modal Product

Modal Product

- Modal Operations take Tensors to Matrices
- Modal Unfolding Example
- Modal Product $A \times_{1} \mathbf{U}=\mathbf{U} A_{(1)}$

Example: Modal Product

$$
=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 13 & 14 & 15 & 16 \\
5 & 6 & 7 & 8 & 17 & 18 & 19 & 20 \\
9 & 10 & 11 & 12 & 21 & 22 & 23 & 24
\end{array}\right]
$$

Modal Product

- Modal Operations take Tensors to Matrices
- Modal Unfolding Example
- Modal Product $A \times_{1} \mathbf{U}=\mathbf{U} A_{(1)}$

Example: Modal Product

$$
\begin{gathered}
=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 13 & 14 & 15 & 16 \\
5 & 6 & 7 & 8 & 17 & 18 & 19 & 20 \\
9 & 10 & 11 & 12 & 21 & 22 & 23 & 24
\end{array}\right] \\
=\left[\begin{array}{cccccccc}
5 & 6 & 7 & 8 & 17 & 18 & 19 & 20 \\
-3 & -2 & -1 & 0 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 25 & 26 & 27 & 28
\end{array}\right]
\end{gathered}
$$

Higher Order SVD

Definition: HOSVD

Suppose \mathcal{A} is a 3 rd-order tensor and $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$. Then there exists a Higher Order SVD such that

$$
\mathbf{U}_{k}^{T} \mathcal{A}_{(k)}=\Sigma_{k} \mathbf{V}_{k}^{T} \quad(1 \leq k \leq d)
$$

where \mathbf{U}_{k} and \mathbf{V}_{k} are unitary matrices and the matrix Σ_{k} contains the singular values of $\mathcal{A}_{(k)}$ on the diagonal, $\left[\Sigma_{k}\right]_{i j}$ where $i=j$, and is zero elsewhere.

- Higher Order SVD Definition

Example: 3rd-Order SVD

$$
\begin{aligned}
& \mathbf{U}_{1}^{T} \mathcal{A}_{(1)}=\hat{\mathcal{A}}_{(1)} \rightarrow \hat{\mathcal{A}} \\
& \mathbf{U}_{2}^{T} \hat{\mathcal{A}}_{(2)}=\hat{\hat{\mathcal{A}}}_{(2)} \rightarrow \hat{\hat{\mathcal{A}}} \\
& \mathbf{U}_{3}^{T} \hat{\hat{\mathcal{A}}}_{(3)}=\mathcal{S}_{(3)} \rightarrow \mathcal{S}
\end{aligned}
$$

- Higher Order SVD Definition

Example: 3rd-Order SVD

$$
\mathcal{S}_{1}=\left[\begin{array}{cccc}
-69.627 & 0.0914 & -1.1 \times 10^{-14} & 3.1 \times 10^{-16} \\
-0.033 & -1.0453 & 2.2 \times 10^{-15} & -7.0 \times 10^{-16} \\
7.5 \times 10^{-15} & 1.9 \times 10^{-15} & -4.9 \times 10^{-16} & -2.6 \times 10^{-16}
\end{array}\right]
$$

- Higher Order SVD Definition

Example: 3rd-Order SVD

$$
\begin{aligned}
& \mathcal{S}_{1}=\left[\begin{array}{cccc}
-69.627 & 0.0914 & -1.1 \times 10^{-14} & 3.1 \times 10^{-16} \\
-0.033 & -1.0453 & 2.2 \times 10^{-15} & -7.0 \times 10^{-16} \\
7.5 \times 10^{-15} & 1.9 \times 10^{-15} & -4.9 \times 10^{-16} & -2.6 \times 10^{-16}
\end{array}\right] \\
& \mathcal{S}_{2}=\left[\begin{array}{cccc}
0.0201 & 2.212 & -2.8 \times 10^{-15} & 8.3 \times 10^{-16} \\
-6.723 & -0.935 & -4.2 \times 10^{-16} & 9.8 \times 10^{-16} \\
5.2 \times 10^{-15} & -3.9 \times 10^{-16} & 3.2 \times 10^{-16} & 8.8 \times 10^{-16}
\end{array}\right]
\end{aligned}
$$

- Higher Order SVD Definition

Example: 3rd-Order SVD

$$
\begin{aligned}
& \hat{\mathbf{U}}_{1} \mathcal{S}_{(1)}=\hat{\mathcal{S}}_{(1)} \rightarrow \hat{\mathcal{S}} \\
& \hat{\mathbf{U}}_{2} \hat{\mathcal{S}}_{(2)}=\hat{\hat{\mathcal{S}}}_{(2)} \rightarrow \hat{\hat{\mathcal{S}}} \\
& \hat{\mathbf{U}}_{3} \hat{\hat{\mathcal{S}}}_{(3)}=\mathcal{A}_{(3)} \rightarrow \mathcal{A}
\end{aligned}
$$

- Higher Order SVD Definition

Example: 3rd-Order SVD

$$
\mathcal{A}_{1}=\left[\begin{array}{ll}
1.0 & 2.0 \\
5.0 & 6.0
\end{array}\right]
$$

- Higher Order SVD Definition

Example: 3rd-Order SVD

$$
\begin{gathered}
\mathcal{A}_{1}=\left[\begin{array}{ll}
1.0 & 2.0 \\
5.0 & 6.0
\end{array}\right] \\
\mathcal{A}_{2}=\left[\begin{array}{ll}
13.0 & 14.0 \\
17.0 & 18.0
\end{array}\right]
\end{gathered}
$$

- Higher Order SVD Definition

Example: 3rd-Order SVD

$$
\begin{gathered}
\mathcal{A}_{1}=\left[\begin{array}{ll}
1.0 & 2.0 \\
5.0 & 6.0
\end{array}\right] \\
\mathcal{A}_{2}=\left[\begin{array}{ll}
13.0 & 14.0 \\
17.0 & 18.0
\end{array}\right] \\
\mathcal{S}=\mathcal{A} \times{ }_{1} U_{1}^{T} \times_{2} U_{2}^{T} \times_{3} U_{3}^{T}
\end{gathered}
$$

- Higher Order SVD Definition

Example: 3rd-Order SVD

$$
\begin{gathered}
\mathcal{A}_{1}=\left[\begin{array}{ll}
1.0 & 2.0 \\
5.0 & 6.0
\end{array}\right] \\
\mathcal{A}_{2}=\left[\begin{array}{ll}
13.0 & 14.0 \\
17.0 & 18.0
\end{array}\right] \\
\mathcal{S}=\mathcal{A} \times_{1} U_{1}^{T} \times_{2} U_{2}^{T} \times_{3} U_{3}^{T} \\
\mathcal{A}=\mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}
\end{gathered}
$$

CP Decomposition

Definition: Rank of a Tensor

The rank of a tensor \mathcal{A} is the smallest number of rank 1 tensors that sum to \mathcal{A}.

CP Decomposition

Definition: CP Decomposition

A CP decomposition of a 3 rd-order tensor, \mathcal{A}, is defined as a sum of vector outer products, denoted \circ, that equal or approximately equal \mathcal{A}. For $R=\operatorname{rank}(\mathcal{A})$

$$
\mathcal{A}=\sum_{r=1}^{R} a_{r} \circ b_{r} \circ c_{r}
$$

and for $R<\operatorname{rank}(\mathcal{A})$

$$
\mathcal{A} \approx \sum_{r=1}^{R} a_{r} \circ b_{r} \circ c_{r}
$$

CP Decomposition

Example: CP Decomposition

$$
\mathcal{A}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathcal{A}_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

CP Decomposition

Example: CP Decomposition

$$
\mathcal{A}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathcal{A}_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

The rank decomposition over \mathbb{R} is $\mathcal{A}=[[\mathbf{A}, \mathbf{B}, \mathbf{C}]]$, where

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right] \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \mathbf{C}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

CP Decomposition

Example: CP Decomposition

$$
\mathcal{A}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathcal{A}_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

The rank decomposition over \mathbb{R} is $\mathcal{A}=[[\mathbf{A}, \mathbf{B}, \mathbf{C}]]$, where

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right] \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \mathbf{C}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

but over \mathbb{C}

$$
\mathbf{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right] \mathbf{B}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right] \mathbf{C}=\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right]
$$

Table of Contents

Background

3rd-Order Tensor Decompositions

- Modal Operations
- Higher Order SVD (HOSVD)
- CANDECOMP/PARAFAC Decomposition
(3) Application to Quantum Chemistry
- The Problem
- A Rotation Matrix
- Rotation by CP Decomposition

4 References

The Problem
A Rotation Matrix
Rotation by CP Decomposition

The Problem

The Problem

We have a $3 \times 3 \times 3$ hyperpolarizability tensor and need to rotate it about 3 axes in space and there is currently no known 3rd-order rotation tensor.

The Problem

The Problem

We have a $3 \times 3 \times 3$ hyperpolarizability tensor and need to rotate it about 3 axes in space and there is currently no known 3rd-order rotation tensor.

For matrices and vectors we have rotation matrices that will rotate our matrix/vector around 3 axes:

$$
\mathrm{R}=\left[\begin{array}{ccc}
\cos (\phi) \cos (\psi)-\cos (\theta) \sin (\phi) \sin (\psi) & -\cos (\theta) \cos (\psi) \sin (\phi)-\cos (\phi) \sin (\psi) & \sin (\theta) \sin (\phi) \\
\cos (\psi) \sin (\phi)+\cos (\theta) \cos (\phi) \sin (\psi) & \cos (\theta) \cos (\phi) \cos (\psi)-\sin (\phi) \sin (\psi) & -\cos (\phi) \sin (\theta) \\
\sin (\theta) \sin (\psi) & \cos (\psi) \sin (\theta) & \cos (\theta)
\end{array}\right]
$$

The Problem

The Problem

We have a $3 \times 3 \times 3$ hyperpolarizability tensor and need to rotate it about 3 axes in space and there is currently no known 3rd-order rotation tensor.

For matrices and vectors we have rotation matrices that will rotate our matrix/vector around 3 axes:

The Problem

The Problem

We have a $3 \times 3 \times 3$ hyperpolarizability tensor and need to rotate it about 3 axes in space and there is currently no known 3rd-order rotation tensor.

Rotation by CP Decomposition

$$
\mathcal{X} \rightarrow \mathcal{X}_{\text {rot }}
$$

The Problem

The Problem

We have a $3 \times 3 \times 3$ hyperpolarizability tensor and need to rotate it about 3 axes in space and there is currently no known 3rd-order rotation tensor.

Rotation by CP Decomposition

$$
\begin{aligned}
\mathcal{X} & \rightarrow \mathcal{X}_{\text {rot }} \\
\mathcal{X} & =\sum_{j=1}^{3}\left(a_{j}\right) \circ\left(b_{j}\right) \circ\left(c_{j}\right)
\end{aligned}
$$

The Problem

The Problem

We have a $3 \times 3 \times 3$ hyperpolarizability tensor and need to rotate it about 3 axes in space and there is currently no known 3rd-order rotation tensor.

Rotation by CP Decomposition

$$
\begin{aligned}
\mathcal{X} & \rightarrow \mathcal{X}_{\text {rot }} \\
\mathcal{X} & =\sum_{j=1}^{3}\left(a_{j}\right) \circ\left(b_{j}\right) \circ\left(c_{j}\right) \\
\mathcal{X}_{\text {rot }} & =\sum_{j=1}^{3}\left(R a_{j}\right) \circ\left(R b_{j}\right) \circ\left(R c_{j}\right)
\end{aligned}
$$

The Problem

Rotation by CP Decomposition

$$
\begin{aligned}
\mathcal{X} & \rightarrow \mathcal{X}_{\text {rot }} \\
\mathcal{X} & =\sum_{j=1}^{3}\left(a_{j}\right) \circ\left(b_{j}\right) \circ\left(c_{j}\right) \\
\mathcal{X}_{\text {rot }} & =\sum_{j=1}^{3}\left(R a_{j}\right) \circ\left(R b_{j}\right) \circ\left(R c_{j}\right)
\end{aligned}
$$

The Problem

Rotation by CP Decomposition

$$
\begin{aligned}
\mathcal{X} & \rightarrow \mathcal{X}_{\text {rot }} \\
\mathcal{X} & =\sum_{j=1}^{3}\left(a_{j}\right) \circ\left(b_{j}\right) \circ\left(c_{j}\right) \\
\mathcal{X}_{\text {rot }} & =\sum_{j=1}^{3}\left(R a_{j}\right) \circ\left(R b_{j}\right) \circ\left(R c_{j}\right) \\
& =\left[R a_{1}\left|R a_{2}\right| R a_{3}\right] \odot\left[R b_{1}\left|R b_{2}\right| R b_{3}\right] \odot\left[R c_{1}\left|R c_{2}\right| R c_{3}\right]
\end{aligned}
$$

The Problem

Rotation by CP Decomposition

$$
\begin{aligned}
\mathcal{X} & \rightarrow \mathcal{X}_{\text {rot }} \\
\mathcal{X} & =\sum_{j=1}^{3}\left(a_{j}\right) \circ\left(b_{j}\right) \circ\left(c_{j}\right) \\
\mathcal{X}_{\text {rot }} & =\sum_{j=1}^{3}\left(R a_{j}\right) \circ\left(R b_{j}\right) \circ\left(R c_{j}\right) \\
& =\left[R a_{1}\left|R a_{2}\right| R a_{3}\right] \odot\left[R b_{1}\left|R b_{2}\right| R b_{3}\right] \odot\left[R c_{1}\left|R c_{2}\right| R c_{3}\right] \\
& =R\left[a_{1}\left|a_{2}\right| a_{3}\right] \odot R\left[b_{1}\left|b_{2}\right| b_{3}\right] \odot R\left[c_{1}\left|c_{2}\right| c_{3}\right]
\end{aligned}
$$

The Problem

Rotation by CP Decomposition

$$
\begin{aligned}
\mathcal{X} & \rightarrow \mathcal{X}_{\text {rot }} \\
\mathcal{X} & =\sum_{j=1}^{3}\left(a_{j}\right) \circ\left(b_{j}\right) \circ\left(c_{j}\right) \\
\mathcal{X}_{\text {rot }} & =\sum_{j=1}^{3}\left(R a_{j}\right) \circ\left(R b_{j}\right) \circ\left(R c_{j}\right) \\
& =\left[R a_{1}\left|R a_{2}\right| R a_{3}\right] \odot\left[R b_{1}\left|R b_{2}\right| R b_{3}\right] \odot\left[R c_{1}\left|R c_{2}\right| R c_{3}\right] \\
& =R\left[a_{1}\left|a_{2}\right| a_{3}\right] \odot R\left[b_{1}\left|b_{2}\right| b_{3}\right] \odot R\left[c_{1}\left|c_{2}\right| c_{3}\right] \\
& =R \mathbf{A} \odot R \mathbf{B} \odot R \mathbf{C}
\end{aligned}
$$

Table of Contents

(1) Background
(2) 3rd-Order Tensor Decompositions

- Modal Operations
- Higher Order SVD (HOSVD)
- CANDECOMP/PARAFAC Decomposition
(3) Application to Quantum Chemistry
- The Problem
- A Rotation Matrix
- Rotation by CP Decomposition

4 References

The End

(1) G.H. Golub and C.F. Van Loan, Matrix Computations, (The Johns Hopkins University Press 2013).
(2) Hongfei Wang et al, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)", International Reviews in Physical Chemistry (2005), (24) no. 2, 191-256.
(3) Kolda, T.G. and Bader, B.W., "Tensor Decompositions and Applications", SIAM Review (2009), (51) no. 3, 455-500.
(9) Carroll, J.Douglas and Chang, Jih-Jie, "Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition", Psychometrika (1970), (35) no. 3, 283-319.

The End

(1) P. Paatero, "A weighted non-negative least squares algorithm for three-way PARAFAC factor analysis", Chemometrics and Intelligent Laboratory Systems (1997), (38) no. 2, 223-242.
(2) N. K. M. Faber and R. Bro, and P. K. Hopke, "Recent developments in CANDECOMP/PARAFAC algorithms: A critical review", Chemometrics and Intelligent Laboratory Systems (2003), (65), 119-137.
(3) J. B. Kruskal, "Rank, decomposition, and uniqueness for 3-way and N-way arrays, in Multiway Data Analysis", 7-18.

