Computer Vision for Linear Algebra

Hunter Wills

April 24, 2014

Hunter Wills Computer Vision for Linear Algebra

・ロト ・回ト ・ヨト ・ヨト

- Homogenous coordinates
- Transformations

Least Squares

Decomposition

4 Benefits of Linear Algebra

- Matrix Decompositions
- Efficiency
- 5 Applications
 - Structure from Motion

< 日 > < 同 > < 三 > < 三 >

- Convolution
- Eigenfaces
- 6 Sources

Basics

Least Squares Singular Value Decomposition Benefits of Linear Algebra Applications Sources

Homogenous coordinates Transformations

What is Computer Vision?

- Artificial intelligence
- Having a computer describe what is sees in the world around it the way a human or animal can
- An inverse problem recovering unknowns from insufficient data to fully describe a "solution"

Basics

Least Squares Singular Value Decomposition Benefits of Linear Algebra Applications Sources

Homogenous coordinates Transformations

Homogenous coordinates

- Adding an extra dimension to the Euclidean system
- Account for the concept of infinity

< ロ > < 同 > < 回 > < 回 >

Basics

Least Squares Singular Value Decomposition Benefits of Linear Algebra Applications Sources

Homogenous coordinates Transformations

Transformations

- Linear transformations used to manipulate the image
- Represented through matrices which act on image vectors through multiplication
- Camera projection matrix
- Types of transformations:

イロト イポト イヨト イヨト

- Real world data is error prone
- Total Least Squares
- Robust Least Squares
- Non-Linear Least Squares

イロン イロン イヨン イヨン

э

- Rotation, scaling, rotation
- Principal Component Analysis
- Generalized inverse

・ロト ・回ト ・ヨト ・ヨト

Matrix Decompositions Efficiency

- Most situations can be approximated well linearly
- Estimation of lost data

Hunter Wills Computer Vision for Linear Algebra

<ロ> <部> < 2> < 2> < 2> < 2> < 2</p>

Matrix Decompositions Efficiency

Matrix Decompositions

- Inverting the transformation from 3D to 2D
- Speedy Calculations
- Accurate Computations
- Projections
- Positive Definite Matricies

(a)

э

Matrix Decompositions Efficiency

Efficiency

- Space efficiency
- Time efficiency

Hunter Wills Computer Vision for Linear Algebra

イロン イロン イヨン イヨン

Structure from Motion Convolution Eigenfaces

Modern Uses of Computer Vision

Hunter Wills

Computer Vision for Linear Algebra

Structure from Motion Convolution Eigenfaces

Structure from Motion

- Process of using a series of 2D images to reconstruct a 3D image
- Depth has been lost in a single 2D image
- Transformations that cannot be inverted have occurred in the process of shifting from 3D to 2D
- Each camera has its own coordinate system so the stationary coordinate system of the object must be used

(a)

Structure from Motion Convolution Eigenfaces

Method

- Clearly identifiable points are identified on the images
- The generalized inverse of the camera's projection matrix is calculated for a single image
- The attempt at an inverted image is transformed into the system of the second image
- The location of identified points in the second image are compared to those of the transformed image
- Additional transformations are estimated to better align the key points
- The process is repeated until key points are reasonably well aligned

Structure from Motion Convolution Eigenfaces

Example

Hunter Wills Computer Vision for Linear Algebra

Structure from Motion Convolution Eigenfaces

Convolution

- Form of linear filtering
- Utilizes a convolution kernel to perform an action on a larger image matrix
- Examples: Blurring, Sharpening, Smoothing, Edge-Identifying, and more

イロン 不同 とくほう イロン

Benefits of Linear Algebra Applications

Structure from Motion Convolution Eigenfaces

Method

- Find the appropriate $n \times n$ convolution kernel
- For every pixel in the image matrix form an $n \times n$ sub-matrix with the adjacent pixels.
- Define the following convolution action on a segment of the image matrix, I, by the convolution kernel K as:

$$b = \sum_{i=0}^{n} \sum_{j=0}^{n} I_{i,j} K_{i,j}$$

 Replace each pixel in the image matrix with the convolution action of the pixel's sub matrix.

Structure from Motion Convolution Eigenfaces

Example

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Blur*	$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	S
	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	S

・ロト ・回ト ・ヨト ・ヨト

Structure from Motion Convolution Eigenfaces

- Used for face identification and recognition
- Eigenfaces are the eigenvectors of the covariance matrix for a set of face images.
- Each face image is a linear combination of the eigenfaces
- Only the "most important" eigenfaces are stored

Structure from Motion Convolution Eigenfaces

Method

• Take a set of $n \times m$ face picture matrices and treat them as a set of nm dimensional vectors.

$$\begin{bmatrix} i_{1,1} & \dots & i_{n,1} \\ \dots & \dots & \dots \\ i_{1,m} & \dots & i_{n,m} \end{bmatrix} \rightarrow \begin{bmatrix} i_{1,1} \\ \dots \\ i_{n,1} \\ i_{1,2} \\ \dots \\ i_{n,m} \end{bmatrix} = \mathbf{i}$$

- Find the average face: $\mathbf{a} = \frac{1}{m} \sum_{j=1}^{m} \mathbf{i}_j$
- Form the image matrix with columns of the difference between each face vector and the average face. $\mathbf{i}_j-\mathbf{a}$
- The right singular vectors of this matrix are the eigenfaces

Structure from Motion Convolution Eigenfaces

Face Recognition

- $\bullet\,$ Treat the face picture matrix as a face vector, f.
- Find the face vector's eigenface components: $w_i = \mathbf{e}_i^*(\mathbf{f} \mathbf{a})$
- Form these eigenface components into a component vector, w
- Calculate the Euclidian distance between the unknown face's component vector and each known face's component vectors as the square of their inner product.
- The face which minimizes the Euclidian distance is the one to which the unknown face belongs

Structure from Motion Convolution Eigenfaces

Example

Hunter Wills Computer Vision for Linear Algebra

・ロト ・四ト ・モト ・モト

Sources

- Szeliski, Richard. 2011. Computer vision algorithms and applications. London: Springer.
- Trefethen, Lloyd N., and David Bau. 1997. Numerical linear algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics.
- Doornik, Jurgen A. 2011. Robust Estimation Using Least Trimmed Squares. Oxford, UK: Oxford Martin School.
- Smith, Lindsay I. 2002. A Tutorial on Principal Components Analysis.
- Turk, Matthew, and Alex Pentland. 1991. Eigenfaces for Recognition. Massachusetts Institute of Technology. Journal of Cognitive Neuroscience.

- Massachusetts Institute of Technology. Chemical Engineering Notes: Cholesky Decomposition.
- Shah, Mubarak. 1997. Fundamentals of Computer Vision. Orlando, FL: University of Central Florida.
- Golub, Gene H., and Charles F. Van Loan. 1983. Matrix computations. Baltimore: Johns Hopkins University Press.
- Lui, Yui M. 2012. Human Gesture Recognition on Product Manifolds. Journal of Machine Learning Research.
- Ahn, Song H. 2005. Homogenous Coordinates.

イロト イポト イヨト イヨト

Sources

- Castro, Luis P., Saburou Saitoh, and Nguyen Minh Tuan. 2012. Convolutions, Integral Transforms, and Integral Equations by means of the Theory of Reproducing Kernels. Opuscula Mathematica Vol. 32.
- O'Hagan, Anthony, Caitlin E. Buck, Alireza Daneshkhah, J. Richard Eiser, Paul H. Garthwaite, David J. Jenkinson, Jeremy E. Oakley, and Tim Rakow. 2006. Uncertain Judgements: Eliciting Experts' Probabilities. West Sussex: John Wiley and Sons Ltd.
- Interviews of industry computer scientists coming from a Ph.D. program in Computer Vision from Georgia Tech University. 2014.

イロン 不同 とくほう イロン

Sources

- "PlayMotion SPG: Special Projects Group," PlayMotion Labs, accessed April 21, 2014, http://www.playmotion.com/services.html
- "Google: Self-driving cars in 3-5 years. Feds: Not so fast," ExtremeTech, accessed April 21, 2014, http://www.extremetech.com/extreme/147940-google-selfdriving-cars-in-3-5-years-feds-not-so-fast
- "Robotic surgery coming this fall to Southcoast Hospitals," Southcoast Health System, accessed April 21, 2014, www.southcoast.org/enews/2008/2008-07-enews.html

 "Video Analytics," Vision Systems Electrical and Security Solutions, accessed April 21, 2014, www.visionsystems.co.nz/Systems-Services/Security-Systems/smart-video-surveillance-intelligent-security-cameraanalysis-__l.2021