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Chapter 1

The Fundamentals

1.1 Introduction

This book is about advanced topics in linear algebra. So we presume you have some
experience with matrix algebra, vector spaces (possibly abstract ones), eigenvalues,
linear transformations, and matrix representations of linear transformations. All
of this material can be found in A First Course in Linear Algebra, which we will
reference frequently.

Our approach is mathematical, which means we include proofs of our results.
However, we are also practical, and will not always be as general as we could be.
For example, we will stick to a single inner product throughout (the sesquilinear
one that is most useful when employing complex numbers). We will sometimes be
careful about our field of scalars, but will not dwell on the distinctions peculiar
to the real numbers (versus the algebraically closed complex numbers). This is
not a course in numerical linear algebra, but much of what we do provides the
mathematical underpinninngs of that topic, so this could be a very useful resource
for study in that area. We will make mention of algorithmic performance, relying
on Trefethen and Bau’s excellent Numerical Linear Algebra for details.

Many topics we consider are motivated by trying to find simpler versions of
matrices. Here “simpler” can be taken to mean many zero entries. Barring a zero
entry, then maybe an entry equal to one is second-best. An overall form that is
much like a diagonal matrix is also desirable, since diagonal matrices are simple to
work with. (forward referenc eto exercise). A familiar example may help to make
these ideas more precise.

Example 1. Given an m×n matrix, A, we know that its reduced row-echelon form
is unique (Theorem RREFU). We also know that we can accomplish row-operations
by multiplying A on the left by a (nonsingular) elementary matrix (Subsection
DM.EM). Suppose we perform repeated row-operations to transform A into a matrix
in reduced row-echelon form, B. Then the product of the elementary matrices is a
square nonsingular matrix, J such that

B = JA

or equivalently
A = J−1B

.
We call the second version a factorization, or matrix decomposition, of A

(Though some might use the same terms for the first version, perhaps saying it is a

1



2 CHAPTER 1. THE FUNDAMENTALS

factorization of B). The pieces of this decomposition have certain properties. The
matrix J−1 is a nonsingular matrix of size m. The matrix B has an abundance of
zero entries, and some strategically placed “leading ones” which signify the pivot
columns. The exact structure of B is described by Definition RREF and Theorem

RREF tells us that we can accomplish this decomposition given any matrix A.
If A is not of full rank, then there are many possibilities for the matrix J ,

even though B is unique. However, results on extended echelon form (Subsection
FS.PEEF suggest a choice for J that is unambiguous. We say that choice is canoni-
cal. This example gives the following theorem, where we have changed the notation
slightly.

Again, many of the topics in this book will have a flavor similar to the previous
example and theorem. However, we will often need to limit the possibilities for
the original matrix (it may need to be square, or its eigenvalues may need certain
properties). We may get more specific information about the components of the
factorization, or we may get less. We will also be interested in obtaining canonical
forms of matrices. You can view orthonormal diagonalization (Section OD) as a
good example of another matrix decomposition, and we will cover it again in some
detail in (cite forward) ??.

1.2 Direct Sums

1.2.1 Direct Sums

Some of the more advanced ideas in linear algebra are closely related to decomposing
(Proof Technique DC) vector spaces into direct sums of subspaces. A direct sum
is a short-hand way to describe the relationship between a vector space and two, or
more, of its subspaces. As we will use it, it is not a way to construct new vector
spaces from others.

Definition 1. Suppose that V is a vector space with two subspaces U and W such
that for every v ∈ V ,

1. There exists vectors u ∈ U , w ∈W such that v = u + w

2. If v = u1+w1 and v = u2+w2 where u1, u2 ∈ U , w1, w2 ∈W then u1 = u2

and w1 = w2.

Then V is the direct sum of U and W and we write V = U ⊕W .

Informally, when we say V is the direct sum of the subspaces U and W , we are
saying that each vector of V can always be expressed as the sum of a vector from
U and a vector from W , and this expression can only be accomplished in one way
(i.e. uniquely). This statement should begin to feel something like our definitions
of nonsingular matrices (Definition NM) and linear independence (Definition LI).
It should not be hard to imagine the natural extension of this definition to the
case of more than two subspaces. Could you provide a careful definition of V =
U1 ⊕ U2 ⊕ U3 ⊕ . . .⊕ Um (Exercise PD.M50)?

Example 2. In C3, define

v1 =

3
2
5

 v2 =

−1
2
1

 v3 =

 2
1
−2
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Then C3 = 〈{v1, v2}〉 ⊕ 〈{v3}〉. This statement derives from the fact that B =
{v1, v2, v3} is basis for C3. The spanning property of B yields the decomposition of
any vector into a sum of vectors from the two subspaces, and the linear independence
of B yields the uniqueness of the decomposition. We will illustrate these claims with
a numerical example.

Choose v =

10
1
6

. Then

v = 2v1 + (−2)v2 + 1v3 = (2v1 + (−2)v2) + (1v3)

where we have added parentheses for emphasis. Obviously 1v3 ∈ 〈{v3}〉, while
2v1 + (−2)v2 ∈ 〈{v1, v2}〉. Theorem VRRB provides the uniqueness of the scalars
in these linear combinations.

Example SDS is easy to generalize into a theorem.

Theorem 1.1. Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}
and m ≤ n. Define

U = 〈{v1, v2, v3, . . . , vm}〉 W = 〈{vm+1, vm+2, vm+3, . . . , vn}〉

Then V = U ⊕W .

Proof. Choose any vector v ∈ V . Then by Theorem VRRB there are unique scalars,
a1, a2, a3, . . . , an such that

v = a1v1 + a2v2 + a3v3 + · · ·+ anvn

= (a1v1 + a2v2 + a3v3 + · · ·+ amvm) +

= (am+1vm+1 + am+2vm+2 + am+3vm+3 + · · ·+ anvn)

= u + w

where we have implicitly defined u and w in the last line. It should be clear that
u ∈ U , and similarly, w ∈W (and not simply by the choice of their names).

Suppose we had another decomposition of v, say v = u∗ + w∗. Then we could
write u∗ as a linear combination of v1 through vm, say using scalars b1, b2, b3, . . . , bm.
And we could write w∗ as a linear combination of vm+1 through vn, say using
scalars c1, c2, c3, . . . , cn−m. These two collections of scalars would then together
give a linear combination of v1 through vn that equals v. By the uniqueness of
a1, a2, a3, . . . , an, ai = bi for 1 ≤ i ≤ m and am+i = ci for 1 ≤ i ≤ n −m. From
the equality of these scalars we conclude that u = u∗ and w = w∗. So with both
conditions of Definition 1 fulfilled we see that V = U ⊕W .

Given one subspace of a vector space, we can always find another subspace that
will pair with the first to form a direct sum. The main idea of this theorem, and
its proof, is the idea of extending a linearly independent subset into a basis with
repeated applications of Theorem ELIS.

Theorem 1.2. Suppose that U is a subspace of the vector space V . Then there
exists a subspace W of V such that V = U ⊕W .

Proof. If U = V , then chooseW = {0}. Otherwise, choose a basisB = {v1, v2, v3, . . . , vm}
for U . Then since B is a linearly independent set, Theorem ELIS tells us there is
a vector vm+1 in V , but not in U , such that B ∪ {vm+1} is linearly independent.
Define the subspace U1 = 〈B ∪ {vm+1}〉.
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We can repeat this procedure, in the case were U1 6= V , creating a new vector
vm+2 in V , but not in U1, and a new subspace U2 = 〈B ∪ {vm+1, vm+2}〉. If we
continue repeating this procedure, eventually, Uk = V for some k, and we can no
longer apply Theorem ELIS. No matter, in this case B ∪{vm+1, vm+2, . . . , vm+k}
is a linearly independent set that spans V , i.e. a basis for V .

Define W = 〈{vm+1, vm+2, . . . , vm+k}〉. We now are exactly in position to
apply Theorem 1.1 and see that V = U ⊕W .

There are several different ways to define a direct sum. Our next two theorems
give equivalences (Proof Technique E) for direct sums, and therefore could have
been employed as definitions. The first should further cement the notion that a
direct sum has some connection with linear independence.

Theorem 1.3. Suppose U and W are subspaces of the vector space V . Then
V = U ⊕W if and only if

1. For every v ∈ V , there exists vectors u ∈ U , w ∈W such that v = u + w.

2. Whenever 0 = u + w with u ∈ U , w ∈W then u = w = 0.

Proof. The first condition is identical in the definition and the theorem, so we only
need to establish the equivalence of the second conditions.

Assume that V = U ⊕W , according to Definition 1. By Property Z, 0 ∈ V
and 0 = 0 + 0. If we also assume that 0 = u + w, then the uniqueness of the
decomposition gives u = 0 and w = 0.
⇐ Suppose that v ∈ V , v = u1 + w1 and v = u2 + w2 where u1, u2 ∈ U ,

w1, w2 ∈W . Then

0 = v − v

= (u1 + w1)− (u2 + w2)

= (u1 − u2) + (w1 −w2)

By Property AC, u1 − u2 ∈ U and w1 − w2 ∈ W . We can now apply our
hypothesis, the second statement of the theorem, to conclude that

u1 − u2 = 0 w1 −w2 = 0

u1 = u2 w1 = w2

which establishes the uniqueness needed for the second condition of the definition.

Our second equivalence lends further credence to calling a direct sum a de-
composition. The two subspaces of a direct sum have no (nontrivial) elements in
common.

Theorem 1.4. Suppose U and W are subspaces of the vector space V . Then
V = U ⊕W if and only if

1. For every v ∈ V , there exists vectors u ∈ U , w ∈W such that v = u + w.

2. U ∩W = {0}.

Proof. The first condition is identical in the definition and the theorem, so we only
need to establish the equivalence of the second conditions.

Assume that V = U ⊕ W , according to Definition 1. By Property Z and
Definition SI, {0} ⊆ U ∩ W . To establish the opposite inclusion, suppose that
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x ∈ U ∩ W . Then, since x is an element of both U and W , we can write two
decompositions of x as a vector from U plus a vector from W ,

x = x + 0 x = 0 + x

By the uniqueness of the decomposition, we see (twice) that x = 0 and U ∩W ⊆
{0}. Applying Definition SE, we have U ∩W = {0}.
⇐ Assume that U ∩W = {0}. And assume further that v ∈ V is such that

v = u1 +w1 and v = u2 +w2 where u1, u2 ∈ U , w1, w2 ∈W . Define x = u1−u2.
then by Property AC, x ∈ U . Also

x = u1 − u2

= (v −w1)− (v −w2)

= (v − v)− (w1 −w2)

= w2 −w1

So x ∈W by Property AC. Thus, x ∈ U ∩W = {0} (Definition SI). So x = 0
and

u1 − u2 = 0 w2 −w1 = 0

u1 = u2 w2 = w1

yielding the desired uniqueness of the second condition of the definition.

If the statement of Theorem 1.3 did not remind you of linear independence, the
next theorem should establish the connection.

Theorem 1.5. Suppose U and W are subspaces of the vector space V with V =
U ⊕W . Suppose that R is a linearly independent subset of U and S is a linearly
independent subset of W . Then R ∪ S is a linearly independent subset of V .

Proof. Let R = {u1, u2, u3, . . . , uk} and S = {w1, w2, w3, . . . , w`}. Begin with
a relation of linear dependence (Definition RLD) on the set R ∪ S using scalars
a1, a2, a3, . . . , ak and b1, b2, b3, . . . , b`. Then,

0 = a1u1 + a2u2 + a3u3 + · · ·+ akuk + b1w1 + b2w2 + b3w3 + · · ·+ b`w`

= (a1u1 + a2u2 + a3u3 + · · ·+ akuk) + (b1w1 + b2w2 + b3w3 + · · ·+ b`w`)

= u + w

where we have made an implicit definition of the vectors u ∈ U , w ∈W .
Applying Theorem 1.3 we conclude that

u = a1u1 + a2u2 + a3u3 + · · ·+ akuk = 0

w = b1w1 + b2w2 + b3w3 + · · ·+ b`w` = 0

Now the linear independence of R and S (individually) yields

a1 = a2 = a3 = · · · = ak = 0 b1 = b2 = b3 = · · · = b` = 0

Forced to acknowledge that only a trivial linear combination yields the zero
vector, Definition LI says the set R ∪ S is linearly independent in V .

Our last theorem in this collection will go some ways towards explaining the
word “sum” in the moniker “direct sum”.
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Theorem 1.6. Suppose U and W are subspaces of the vector space V with V =
U ⊕W . Then dim (V ) = dim (U) + dim (W ).

Proof. We will establish this equality of positive integers with two inequalities. We
will need a basis of U (call it B) and a basis of W (call it C).

First, note that B and C have sizes equal to the dimensions of the respective
subspaces. The union of these two linearly independent sets, B ∪C will be linearly
independent in V by Theorem 1.5. Further, the two bases have no vectors in
common by Theorem 1.4, since B∩C ⊆ {0} and the zero vector is never an element
of a linearly independent set (Exercise LI.T10). So the size of the union is exactly
the sum of the dimensions of U and W . By Theorem G the size of B ∪ C cannot
exceed the dimension of V without being linearly dependent. These observations
give us dim (U) + dim (W ) ≤ dim (V ).

Grab any vector v ∈ V . Then by Theorem 1.4 we can write v = u + w with
u ∈ U and w ∈ W . Individually, we can write u as a linear combination of the
basis elements in B, and similarly, we can write w as a linear combination of the
basis elements in C, since the bases are spanning sets for their respective subspaces.
These two sets of scalars will provide a linear combination of all of the vectors in
B ∪C which will equal v. The upshot of this is that B ∪C is a spanning set for V .
By Theorem G, the size of B∪C cannot be smaller than the dimension of V without
failing to span V . These observations give us dim (U) + dim (W ) ≥ dim (V ).

There is a certain appealling symmetry in the previous proof, where both linear
independence and spanning properties of the bases are used, both of the first two
conclusions of Theorem G are employed, and we have quoted both of the two
conditions of Theorem 1.4.

One final theorem tells us that we can successively decompose direct sums into
sums of smaller and smaller subspaces.

Theorem 1.7. Suppose V is a vector space with subspaces U and W with V =
U ⊕ W . Suppose that X and Y are subspaces of W with W = X ⊕ Y . Then
V = U ⊕X ⊕ Y .

Proof. Suppose that v ∈ V . Then due to V = U ⊕W , there exist vectors u ∈ U
and w ∈ W such that v = u + w. Due to W = X ⊕ Y , there exist vectors x ∈ X
and y ∈ Y such that w = x + y. All together,

v = u + w = u + x + y

which would be the first condition of a definition of a 3-way direct product.
Now consider the uniqueness. Suppose that

v = u1 + x1 + y1 v = u2 + x2 + y2

Because x1 + y1 ∈W , x2 + y2 ∈W , and V = U ⊕W , we conclude that

u1 = u2 x1 + y1 = x2 + y2

From the second equality, an application of W = X ⊕ Y yields the conclusions
x1 = x2 and y1 = y2. This establishes the uniqueness of the decomposition of v
into a sum of vectors from U , X and Y .

Remember that when we write V = U ⊕W there always needs to be a “super-
space,” in this case V . The statement U⊕W is meaningless. Writing V = U⊕W is
simply a shorthand for a somewhat complicated relationship between V , U and W ,
as described in the two conditions of Definition 1, or Theorem 1.3, or Theorem 1.4.



1.3. ORTHOGONAL COMPLEMENTS 7

Theorem 1.1 and Theorem 1.2 gives us sure-fire ways to build direct sums, while
Theorem 1.5, Theorem 1.6 and Theorem 1.7 tell us interesting properties of direct
sums.

This subsection has been long on theorems and short on examples. If we were to
use the term “lemma” we might have chosen to label some of these results as such,
since they will be important tools in other proofs, but may not have much interest
on their own (see Proof Technique LC). We will be referencing these results heavily
in later sections, and will remind you then to come back for a second look.

1.3 Orthogonal Complements

Theorem 〈〈above on repeated sums〉〉 mentions repeated sums, which are of interest.
However, when we begin with a vector space V and a single subspace W , we can
ask about the existence of another subspace, W , such that V = U⊕W . The answer
is that such a W always exists, and we then refer to it as a complementof U .

Definition 2. Suppose that V is a vector space with a subspace U . If W is a
subspace such that V = U ⊕W , then W is the complement of V .

Every subspace has a complement, and generally it is not unique.

Lemma 1.8. Suppose that V is a vector space with a subspace U . Then there exists
a subspace W such that V = U ⊕W , so W is the complement of V .

Proof. Suppose that dim (V ) = n and dim (U) = k, and letB = {u1, u2, u3, . . . , uk}
be a basis of U . With n − k applications of Theorem ELIS we obtain vectors
v1, v2, v3, . . . , vn−k that succesively create basesBi = {u1, u2, u3, . . . , uk, v1, v2, v3, . . . , vi},
0 ≤ i ≤ n− k for subspaces U = U0, U1, . . . , Un−k = V , where dim (Ui) = k + i.

DefineW = 〈{v1, v2, v3, . . . , vn−k}〉. Since {u1, u2, u3, . . . , uk, v1, v2, v3, . . . , vi}
is a basis for V and {u1, u2, u3, . . . , uk} is a basis for U , we can apply Theorem
〈〈Direct Sum From a Basis (above)〉〉 to see that V = U ⊕W , so W is the comple-
ment of V . (Compare with 〈〈Direct Sum From One Subspace (above)〉〉, which has
identical content, but a different write-up.)

The freedom given when we “extend” a linearly independent set (or basis) to
create a basis for the complement means that we can create a complement in many
ways, so it is not unique.

Exercise 1. Consider the subspace U of V = C3,

U =

〈
 1
−6
−8

 ,
 1
−5
−7


〉
.

Create two different complements of U , being sure to prove that your complements
are unequal (and not simply have unequal bases). Before reading ahead, can you
think of an ideal (or “canonical”) choice for the complement?

Exercise 2. Consider the subspace U of V = C5,

U =

〈


1
−4
−2
6
−5

 ,


1
−4
−1
4
−3



〉
.

Create a complement of U . (If you have read ahead, do not create an orthogonal
complement for this exercise.)
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With an inner product, and a notion of orthogonality, we can define a canonical,
and useful, complement for every subspace.

Definition 3. Suppose that V is a vector space with a subspace U . Then the
orthogonal complement of U (relative to V ) is

U⊥ = {v ∈ V | 〈v, u〉 = 0 for every u ∈ U} .

A matrix formulation of the orthogonal complement will help us establish that
the moniker “complement” is deserved.

Theorem 1.9. Suppose that V is a vector space with a subspace U . Let A be a
matrix whose columns are a spanning set for U . Then U⊥ = N (A∗).

Proof. Membership in the orthogonal complement requires a vector to be orthog-
onal to every vector of U . However, because of the linearity of the inner product
(Theorem IPVA, Theorem IPSM), it is equivalent to require that a vector be or-
thogonal to each member of a spanning set for U . So membership in the orthogonal
complement is equivalent to being orthogonal to each column of A. We obtain the
desired set equality from the equivalences,

v ∈ U⊥ ⇐⇒ v∗A = 0∗ ⇐⇒ A∗v = 0 ⇐⇒ v ∈ N (A∗) .

Theorem 1.10. Suppose that V is a vector space with a subspace U . Then V =
U ⊕ U⊥.

Proof. We first establish that U ∩ U⊥ = {0}. Suppose u ∈ U and u ∈ U⊥. Then
〈u, u〉 = 0 and by Theorem PIP we conclude that u = 0.

We now show that an arbitrary vector v can be written as a sum of vectors
from U and U⊥. Without loss of generality, we can assume we have an orthonormal
basis for U , for if not, we can apply the Gram-Schmidt process to any basis of U to
create an orthogonal spanning set, whose individual vectors can be scaled to have
norm one (Theorem GSP). Denote this basis as B = {u1, u2, u3, . . . , uk}.

Define the vector v1 as a linear combination of the vectors of B, so v1 ∈ U .

v1 =

k∑
i=1

〈ui, v〉 ui

. Define v2 = v− v1, so trivially by construction, v = v1 + v2. It remains to show
that v2 ∈ U⊥. We repeatedly use properties of the inner product. This construction
and proof may remind you of the Gram-Schmidt process. For 1 ≤ j ≤ k,

〈v2, uj〉 = 〈v, uj〉 − 〈v1, uj〉

= 〈v, uj〉 −
k∑
i=1

〈〈ui, v〉 ui, uj〉

= 〈v, uj〉 −
k∑
i=1

〈ui, v〉 〈ui, uj〉

= 〈v, uj〉 − 〈uj , v〉 〈uj , uj〉
= 〈v, uj〉 − 〈v, uj〉
= 0

We have fulfilled the hypotheses of 1.3 and so can say V = U ⊕ U⊥.
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Theorem 1.10 gives us a canonical choice of a complementary subspace, which
has useful orthogonality properties. It also allows us to decompose any vector
(uniquely) into an element of a subspace, plus an orthogonal vector. This might
remind you in some ways of “resolving a vector into compoments” if you have
studied physics some.

Given a matrix, we get a natural vector space decomposition.

Corollary 1.11. Suppose that A is an m× n matrix. Then

Cm = C(A)⊕ C(A)
⊥

= C(A)⊕N (A∗) .

Proof. Theorem 1.10 provides the first equality and Theorem 1.9 gives the second.

Exercise 3. Compute the orthogonal complement of the subspace U ⊂ C3.

U =

〈
 1
−1
5

 ,
3

1
3


〉

Solution. Form the matrix A, whose columns are the two basis vectors given for
U and compute the null space N (A∗) by row-reducing the matrix. (Theorem 1.9)

A∗ =

[
1 −1 5
3 1 3

]
RREF−−−−→

[
1 0 2
0 1 −3

]
So

U⊥ = N (A∗) =

〈
−2

3
1


〉

Exercise 4. Compute the orthogonal complements of the two subspaces from Ex-
ercises 1 and 2. For the subspace of C5 verify that your first complement was not
the orthogonal complement (or return to the exercise and find a complement that
is not orthogonal).

1.4 Invariant Subspaces

1.4.1 Invariant Subspaces

Definition 4. Suppose that T : V → V is a linear transformation and W is a
subspace of V . Suppose further that T (w) ∈ W for every w ∈ W . Then W is an
invariant subspace of V relative to T .

We do not have any special notation for an invariant subspace, so it is important
to recognize that an invariant subspace is always relative to both a superspace (V )
and a linear transformation (T ), which will sometimes not be mentioned, yet will
be clear from the context. Note also that the linear transformation involved must
have an equal domain and codomain —the definition would not make much sense
if our outputs were not of the same type as our inputs.

As is our habit, we begin with an example that demonstrates the existence of
invariant subspaces, while leaving other questions unanswered for the moment. We
will return later to understand how this example was constructed, but for now, just
understand how we check the existence of the invariant subspaces.
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Example 3. Consider the linear transformation T : C4 → C4 defined by T (x) = Ax
where A is given by

A =


−8 6 −15 9
−8 14 −10 18
1 1 3 0
3 −8 2 −11


Define (with zero motivation),

w1 =


−7
−2
3
0

 w2 =


−1
−2
0
1


and set W = 〈{w1, w2}〉. We verify that W is an invariant subspace of C4 with
respect to T . By the definition of W , any vector chosen from W can be written
as a linear combination of w1 and w2. Suppose that w ∈ W , and then check the
details of the following verification,

T (w) = T (a1w1 + a2w2)

= a1T (w1) + a2T (w2)

= a1


−1
−2
0
1

+ a2


5
−2
−3
2


= a1w2 + a2 ((−1)w1 + 2w2)

= (−a2)w1 + (a1 + 2a2)w2 ∈W

So, by Definition IS, W is an invariant subspace of C4 relative to T .
In an entirely similar manner we construct another invariant subspace of T .With

zero motivation, define

x1 =


−3
−1
1
0

 w2 =


−1
−2
0
1


and set W = 〈{w1, w2}〉. We verify that W is an invariant subspace of C4 with
respect to T . By the definition of W , any vector chosen from W can be written
as a linear combination of w1 and w2. Suppose that w ∈ W , and then check the
details of the following verification,

T (w) = T (a1w1 + a2w2)

= a1T (w1) + a2T (w2)

= a1


−1
−2
0
1

+ a2


5
−2
−3
2


= a1w2 + a2 ((−1)w1 + 2w2)

= (−a2)w1 + (a1 + 2a2)w2 ∈W

So, by Definition IS, W is an invariant subspace of C4 relative to T .
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In an entirely similar manner we construct another invariant subspace of T .With
zero motivation, define

x1 =


−3
−1
1
0

 x2 =


0
−1
0
1


and set X = 〈{x1, x2}〉. We verify that X is an invariant subspace of C4 with
respect to T . By the definition of X, any vector chosen from X can be written as
a linear combination of x1 and x2. Suppose that x ∈ X, and then check the details
of the following verification,

T (x) = T (b1x1 + b2x2)

= b1T (x1) + b2T (x2)

= b1


3
0
−1
1

+ b2


3
4
−1
−3


= b1 ((−1)x1 + x2) + b2 ((−1)x1 + (−3)x2)

= (−b1 − b2)x1 + (b1 − 3b2)x2 ∈ X

So, by Definition IS, X is an invariant subspace of C4 relative to T .

There is a bit of magic in each of these verifications where the two outputs of
T happen to equal linear combinations of the two inputs. But this is the essential
nature of an invariant subspace. We’ll have a peek under the hood later, and it
won’t look so magical after all.

Verify that B = {w1, w2, x1, x2} is linearly independent, and hence a basis
of C4. Splitting this basis in half, Theorem 1.1 tells us that C4 = W ⊕ X. To
see exactly why a decomposition of a vector space into a direct sum of invariant
subspaces might be interesting work Exercise 5 now.

Exercise 5. Construct a matrix representation of the linear transformation T of
Exercise 3 relative to the basis formed as the union of the bases of the two invariant
subspaces, MT

B,B . Comment on your observations, perhaps after computing a few
powers of the matrix representation (which represent repeated compositions of T
with itself). Hmmmmmm.

Solution. Our basis is

B = {w1, w2, x1, x2} =



−7
−2
3
0

 ,

−1
−2
0
1

 ,

−3
−1
1
0

 ,


0
−1
0
1




Now we perform the necessary computions for the matrix representation of T
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relative to B

ρB (T (w1)) = ρB



−1
−2
0
1


 = ρB ((0)w1 + (1)w2) =


0
1
0
0



ρB (T (w2)) = ρB




5
−2
−3
2


 = ρB ((−1)w1 + (2)w2) =


−1
2
0
0



ρB (T (x1)) = ρB




3
0
−1
1


 = ρB ((−1)x1 + (1)x2) =


0
0
−1
1



ρB (T (x2)) = ρB




3
4
−1
−3


 = ρB ((−1)x1 + (−3)x2) =


0
0
−1
−3


Applying Definition MR, we have

MT
B,B =


0 −1 0 0
1 2 0 0
0 0 −1 −1
0 0 1 −3


The interesting feature of this representation is the two 2×2 blocks on the diagonal
that arise from the decomposition of C4 into a direct sum of invariant subspaces.
Or maybe the interesting feature of this matrix is the two 2× 2 submatrices in the
“other” corners that are all zero. You can decide.

Exercise 6. Prove that the subspaces U, V ⊆ C5 are invariant with respect to the
linear transformation R : C5 → C5 defined by R (x) = Bx.

B =


4 47 3 −46 20
10 61 8 −56 10
−10 −69 −7 67 −20
11 70 9 −64 12
3 19 3 −16 1



U =

〈


1
0
−1
0
0

 ,


0
1
−1
1
0



〉

V =

〈


1
1
−1
1
0

 ,


3
3
−2
4
2

 ,

−2
3
−2
3
1



〉

� �
B = matrix(QQ , [[4, 47, 3, -46, 20],

[10, 61, 8, -56, 10],

[-10, -69, -7, 67, -20],

[11, 70, 9, -64, 12],

[3, 19, 3, -16, 1]])� �
Prove that the union of U and V is a basis of C5, and then provide a matrix

representation of R relative to this basis.
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Example 3 and Exercise 6 are a bit mysterious at this stage. Do we know any
other examples of invariant subspaces? Yes, as it turns out, we have already seen
quite a few. We will give some specific examples, and for more general situations,
describe broad classes of invariant subspaces by theorems. First up is eigenspaces.

Theorem 1.12. Suppose that T : V → V is a linear transformation with eigenvalue
λ and associated eigenspace ET (λ). Let W be any subspace of ET (λ). Then W is
an invariant subspace of V relative to T .

Proof. Choose w ∈W . Then

T (w) = λw ∈W.

So by Definition 4, W is an invariant subspace of V relative to T .

Theorem 1.12 is general enough to determine that an entire eigenspace is an
invariant subspace, or that simply the span of a single eigenvector is an invariant
subspace. It is not always the case that any subspace of an invariant subspace
is again an invariant subspace, but eigenspaces do have this property. Here is an
example of the theorem, which also allows us to very quickly build several invariant
subspaces.

Example 4. Define the linear transformation S : M22 →M22 by

S

([
a b
c d

])
=

[
−2a+ 19b− 33c+ 21d −3a+ 16b− 24c+ 15d
−2a+ 9b− 13c+ 9d −a+ 4b− 6c+ 5d

]
Build a matrix representation of S relative to the standard basis (Definition MR)
and compute eigenvalues and eigenspaces of S with the computational techniques
of Chapter E in concert with Theorem EER. Then

ES (1) =

〈{[
4 3
2 1

]}〉
ES (2) =

〈{[
6 3
1 0

]
,

[
−9 −3
0 1

]}〉
So by Theorem 1.12, both ES (1) and ES (2) are invariant subspaces of M22 relative
to S.

However, Theorem 1.12 provides even more invariant subspaces. Since ES (1)
has dimension 1, it has no interesting subspaces, however ES (2) has dimension 2
and has a plethora of subspaces. For example, set

u = 2

[
6 3
1 0

]
+ 3

[
−9 −3
0 1

]
=

[
−6 −3
2 3

]
and define U = 〈{u}〉. Then since U is a subspace of ES (2), Theorem 1.12 says
that U is an invariant subspace of M22 (or we could check this claim directly based
simply on the fact that u is an eigenvector of S).

For every linear transformation there are some obvious, trivial invariant sub-
spaces. Suppose that T : V → V is a linear transformation. Then simply because
T is a function, the subspace V is an invariant subspace of T . In only a minor twist
on this theme, the range of T , R(T ), is an invariant subspace of T by Definition

RLT. Finally, Theorem LTTZZ provides the justification for claiming that {0} is
an invariant subspace of T .

That the trivial subspace is always an invariant subspace is a special case of the
next theorem. But first, work the following straightforward exercise before reading
the next theorem. We’ll wait.
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Exercise 7. Prove that the kernel of a linear transformation (Definition KLT),
K(T ), is an invariant subspace.

Theorem 1.13. Suppose that T : V → V is a linear transformation and k is a
non-negative integer. Then K

(
T k
)

is an invariant subspace of V .

Proof. Suppose that z ∈ K
(
T k
)
. Then

T k (T (z)) = T k+1 (z) = T
(
T k (z)

)
= T (0) = 0.

So by Definition KLT, we see that T (z) ∈ K
(
T k
)
. Thus K

(
T k
)

is an invariant
subspace of V relative to T by Definition 4.

Two special cases of Theorem 1.13 occur when we choose k = 0 and k = 1. The
next example is unusual, but a good illustration.

Example 5. Consider the 10×10 matrix A below as defining a linear transformation
T : C10 → C10. We also provide a Sage version of the matrix for use online.

A =



−1 −9 −24 −16 −40 −36 72 66 21 59
19 4 7 −18 2 −12 67 69 16 −35
−1 1 2 5 5 6 −17 −17 −5 −8
2 −2 −7 −8 −13 −13 32 28 11 14
−11 −2 −1 12 6 11 −50 −44 −16 13

4 −1 −5 −14 −16 −16 55 43 24 17
−14 1 7 20 19 26 −82 −79 −21 −1
12 0 −4 −17 −14 −20 68 64 19 −2
10 −2 −9 −16 −20 −24 68 65 17 9
−1 −2 −5 −3 −8 −7 13 12 4 14


� �
matrix(QQ, [[-1, -9, -24, -16, -40, -36, 72, 66, 21, 59],

[19, 4, 7, -18, 2, -12, 67, 69, 16, -35],

[-1, 1, 2, 5, 5, 6, -17, -17, -5, -8],

[2, -2, -7, -8, -13, -13, 32, 28, 11, 14],

[-11, -2, -1, 12, 6, 11, -50, -44, -16, 13],

[4, -1, -5, -14, -16, -16, 55, 43, 24, 17],

[-14, 1, 7, 20, 19, 26, -82, -79, -21, -1],

[12, 0, -4, -17, -14, -20, 68, 64, 19, -2],

[10, -2, -9, -16, -20, -24, 68, 65, 17, 9],

[-1, -2, -5, -3, -8, -7, 13, 12, 4, 14]

])� �
The matrix A has rank 9 and so T has a nontrivial kernel. But it gets better. T

has been constructed specially so that the nullity of T k is exactly k, for 0 ≤ k ≤ 10.
This is an extremely unusual situation, but is a good illustration of a very general
theorem about kernels of null spaces, coming next. We compute the invariant
subspace K

(
T 5
)
, you can practice with others.

We work with the matrix, recalling that null spaces and column spaces of matri-
ces correspond to kernels and ranges of linear transformations once we understand
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matrix representations of linear transformations (Section MR).

A5 =



37 24 65 −35 77 32 80 98 23 −125
19 11 37 −21 46 19 29 49 6 −70
−7 −5 −15 8 −18 −8 −15 −19 −6 26
14 9 27 −15 33 14 26 37 7 −50
−8 −7 −25 14 −33 −16 −10 −23 −5 37
12 11 35 −19 45 22 22 35 11 −52
−27 −18 −56 31 −69 −30 −49 −72 −15 100
20 14 45 −25 56 25 35 54 12 −77
24 16 49 −27 60 26 45 64 14 −88
8 5 13 −7 15 6 18 21 5 −26



K
(
T 5
)

= N
(
A5
)

=

〈




1
−1
0
0
−1
2
0
0
0
0


,



−1
−3
−3
−2
2
0
1
0
0
0


,



−2
−1
0
0
0
0
0
1
0
0


,



1
−1
−4
−2
2
0
0
0
1
0


,



5
−3
1
1
1
0
0
0
0
2





〉

As an illustration of K
(
T 5
)

as a subspace invariant under T , we form a linear
combination of the five basis vectors (named zi, in order), which will be then be
an element of the invariant subspace. We apply T , so the output should again be
in the subspace, which we verify by giving an expression for the output as a linear
combination of the basis vectors for the subspace.

z = 3z1 − z2 + 3z3 + 2z4 − 2z5 =



−10
1
−9
−6
−3
6
−1
3
2
−4



T (z) = Az =



149
93
−28
68
−73
94
−136
110
116
28


= 47z1 − 136z2 + 110z3 + 116z4 + 14z5

Exercise 8. Reprise Example 5 using the same linear transformation. Use a differ-
ent power (not k = 0, 1, 5, 9, 10 on your first attempt), form a vector in the kernel
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of your chosen power, then apply T to it. Your output should be in the kernel.
(Check this with Sage by using the in Python operator.) Thus, you should be able
to write the output as a linear combination of the basis vectors. Rinse, repeat.

1.4.2 Restrictions of Linear Transformations

A primary reason for our interest in invariant subspaces is they provide us with
another method for creating new linear transformations from old ones.

Definition 5. Suppose that T : V → V is a linear transformation, and U is an
invariant subspace of V relative to T . Define the restriction of T to U by

T |U : U → U T |U (u) = T (u)

It might appear that this definition has not accomplished anything, as T |U
would appear to take on exactly the same values as T . And this is true. However,
T |U differs from T in the choice of domain and codomain. We tend to give little
attention to the domain and codomain of functions, while their defining rules get
the spotlight. But the restriction of a linear transformation is all about the choice
of domain and codomain. We are restricting the rule of the function to a smaller
subspace. Notice the importance of only using this construction with an invariant
subspace, since otherwise we cannot be assured that the outputs of the function are
even contained in the codomain. This observation should be the key step in the
proof of a theorem saying that T |U is also a linear transformation, but leave that
as an exercise.

Example 6. In Exercise 6 you verified that the subspaces U, V ⊆ C5 are invariant
with respect to the linear transformation R : C5 → C5 defined by R (x) = Bx.

B =


4 47 3 −46 20
10 61 8 −56 10
−10 −69 −7 67 −20
11 70 9 −64 12
3 19 3 −16 1



U =

〈


1
0
−1
0
0

 ,


0
1
−1
1
0



〉

V =

〈


1
1
−1
1
0

 ,


3
3
−2
4
2

 ,

−2
3
−2
3
1



〉

It is a simple matter to define two new linear transformations, R|U , R|V ,

R|U : U → U R|U (x) = Bx

R|V : V → V R|V (x) = Bx

It should not look like we have accomplished much. Worse, it might appear that
R = R|U = R|V since each is described by the same rule for computing the image
of an input. The difference is that the domains are all different: C5, U, V . Since U
and V are invariant subspaces, we can then use these subspaces for the codomains
of the restrictions.

We will frequently need the matrix representations of linear transformation re-
strictions, so let’s compute those now for this example. Let

C = {u1, u2} D = {v1, v2, v3}
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be the bases for U and V , respectively.
For U

ρC (R|U (u1)) = ρC




1
2
−3
2
0


 = ρC (1u1 + 2u2) =

[
1
2

]

ρC (R|U (u2)) = ρC



−2
−3
5
−3
0


 = ρC (−2u1 − 3u2) =

[
−2
−3

]

Applying Definition MR, we have

M
R|U
C,C =

[
1 −2
2 −3

]
For V

ρD (R|V (v1)) = ρD
([

2, 7,−5, 8, 3
])

= ρD (v1 + v2 + v3) =

1
1
1


ρD (R|V (v2)) = ρD

([
3,−7, 5,−7,−2

])
= ρD (−v1 + 2v3) =

−1
0
2


ρD (R|V (v3)) = ρD

([
9,−11, 8,−10,−2

])
= ρD (−2v1 + v2 + 4v3) =

−2
1
4


Applying Definition MR, we have

M
R|V
D,D =

1 −1 −2
1 0 1
1 2 4


It is no accident that these two square matrices are the diagonal blocks of the

matrix representation you built for R relative to the basis C ∪D in Exercise 6.

The key observation of the previous example is worth stating very clearly: A
basis derived from a direct sum decomposition into subspaces that are invariant
relative to a linear transformation will provide a matrix representation of the linear
transformation with a block diagonal form.

Diagonalizing a linear transformation is the most extreme example of decom-
posing a vector space into invariant subspaces. When a linear transformation is
diagonalizable, then there is a basis composed of eigenvectors (Theorem DC). Each
of these basis vectors can be used individually as the lone element of a basis for an
invariant subspace (Theorem EIS). So the domain decomposes into a direct sum of
one-dimensional invariant subspaces via Theorem 1.1. The corresponding matrix
representation is then block diagonal with all the blocks of size 1, i.e. the matrix is
diagonal. Section 〈〈section-jordan-canonical-form〉〉 is devoted to generalizing this
extreme situation when there are not enough eigenvectors available to make such a
complete decomposition and arrive at such an elegant matrix representation.

You can find more examples of invariant subspaces, linear transformation restric-
tions and matrix representations in Sections 3.1, 〈〈section-nilpotent-linear-transformations〉〉,
〈〈section-jordan-canonical-form〉〉.
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1.5 Reflectors

When we decompose matrices into products of other matrices, we often wish to
create matrices with many zero entries. A Householder matrix is a unitary
matrix which transforms a vector into a vector of the same size that is a nonzero
multiple of the first column of an identity matrix, thus creating a vector with just
a single nonzero entry. A typical application is to “zero out” entries of a matrix
below the diagonal, column-by-column, in order to achieve a triangular matrix.

Definition 6. Given a nonzero vector v ∈ Cn, the Householder matrix for v is

P = In −
(

2

〈v, v〉

)
vv∗

. The vector v is called the Householder vector.

A Householder matrix is both Hermitian and unitary.

Lemma 1.14. The Householder matrix for v ∈ Cn is Hermitian.

Proof.

P ∗ =

(
In −

(
2

〈v, v〉

)
vv∗

)∗
= I∗n −

(
2

〈v, v〉

)
(vv∗)

∗

= In −
(

2

〈v, v〉

)
(v∗)

∗
v∗

= In −
(

2

〈v, v〉

)
vv∗

= P

Lemma 1.15. The Householder matrix for v ∈ Cn is unitary.

Proof.

P ∗P = PP

=

(
In −

(
2

〈v, v〉

)
vv∗

)(
In −

(
2

〈v, v〉

)
vv∗

)
= I2n −

(
2

〈v, v〉

)
vv∗ −

(
2

〈v, v〉

)
vv∗ +

(
4

〈v, v〉2

)
vv∗vv∗

= In −
(

4

〈v, v〉

)
vv∗ +

(
4

〈v, v〉2

)
v 〈v, v〉v∗

= In −
(

4

〈v, v〉

)
vv∗ +

(
4

〈v, v〉

)
vv∗

= In
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Our aim with a Householder matrix is to convert a vector x into a scalar multiple
of the first column of the identity matrix, e1. Which Householder vector should we
choose for constructing such a matrix, and which multiple will we get? It is an
instructive exercise to reverse-engineer the choice by setting Px = αe1 (Exercise
12). Instead, we give the answer and prove that it does the desired job.

Theorem 1.16. Given a vector x ∈ Rn, define v = x ± ‖x‖ e1 and let P be the
Householder matrix for the Householder vector v. Then Px = ∓‖x‖ e1.

Proof. We first establish an unmotivated identity.

〈v, v〉 = (x± ‖x‖ e1)
∗

(x± ‖x‖ e1)

= x∗x± x∗ ‖x‖ e1 ± (‖x‖ e1)
∗
x + (‖x‖ e1)

∗
(‖x‖ e1)

= x∗x± ‖x‖ e∗1x± ‖x‖ e∗1x + x∗xe∗1e1

= 2 (x∗x± ‖x‖ e∗1x)

= 2 (x∗ ± ‖x‖ e∗1) x

= 2 (x± ‖x‖ e1)
∗
x

= 2v∗x

Then

Px =

(
In −

(
2

〈v, v〉

)
vv∗

)
x

= Inx−
(

2

〈v, v〉

)
vv∗x

= x−
(

2

2v∗x

)
vv∗x

= x− v

= x− (x± ‖x‖ e1)

= ∓‖x‖ e1

Example 7. Consider the vector x and construct the Householder vector v.

x =

4
4
7

 v = x− 9e1 =

−5
4
7


Then the Householder matrix for v is

P =

 4
9

4
9

7
9

4
9

29
45 − 28

45
7
9 − 28

45 − 4
45


We can check that the matrix behaves as we expect.

Px =

9
0
0


A Householder matrix is often called a Householder reflection. Why? Any

Householder matrix, when thought of as a mapping of points in a physical space, will
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fix the elements of a hyperplane and reflect any other points about that hyperplane.
To see this, consider any vector w and compare it with its image, Pw

Pw −w = Inw −
(

2

〈v, v〉

)
vv∗w −w

= − 2

〈v, v〉
v 〈v, w〉

= −2 〈v, w〉
〈v, v〉

v

So this difference is always a scalar multiple of the Householder vector v, and
thus every point gets moved in the same direction, the direction described by v.
Which points are fixed by P? The difference above is the zero vector precisely
when the scalar multiple is zero, which will happen when 〈v, w〉 = 0. So the set
of points/vectors which are orthogonal to v will be unmoved. This is a subspace of
dimension one less than the full space, which are typically described by the term
hyperplanes.

To be more specific, consider the specific situation of Example 7, viewed in R3.
The hyperplane is the subspace orthogonal to v, or the two-dimensional plane with
v as its normal vector, and equation −5x + 4y + 7z = 0. The points (4, 4, 7) and
(9, 0, 0) lie on either side of the plane and are a reflection of each other in the
plane, by which we mean the vector (4, 4, 7)− (9, 0, 0) = (−5, 4, 7) is perpendicular
(orthogonal, normal) to the plane.

Our choice of v can be replaced by v = x + ‖x‖ e1, so in the previous example

we would have v =

13
4
7

, and then P would take x to

−9
0
0

. This would be a

reflection across the plane with equation 13x+ 4y+ 7z = 0. Notice that the normal
vector of this plane is orthogonal to the normal vector of the previous plane, which
is not an accident (Exercise 9).

As a practical matter, we would choose the Householder vector which moves x
the furthest, to get better numerical behavior. So in our example above, the second
choice would be better, since x will be moved a distance 2 ‖v‖ and the second v
has a larger norm.

Exercise 9. In the real case, we have two choices for a Householder vector which
will “zero out” most of a vector. Show that these two vectors, x + ‖x‖ e1 and
x− ‖x‖ e1, are orthogonal to each other.

Exercise 10. Prove the following generalization of Theorem 1.16. Given a vector
x ∈ Cn, define ρ = [x]1 / |[x]1| and v = x± ρ ‖x‖ e1 and let P be the Householder
matrix for the Householder vector v. Then Px = ∓ρ ‖x‖ e1.

Exercise 11. Suppose that P is a Householder matrix of size n and b ∈ Cn is any
vector. Find an expression for the matrix-vector product Pb which will suggest a
way to compute this vector with fewer than the ∼ 2n2 operations required for a
general matrix-vector product.

Exercise 12. Begin with the condition that a Householder matrix will accomplish
Px = αe1 and “discover” the choice for the Householder vector described in The-
orem 1.16. Hint: The condition implies that the Householder vector v is in the
span of {x, e1}.
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1.6 Projectors

When we multiply a vector by a matrix, we form a linear combination of the columns
of the matrix. Said differently, the result of the product is in the column space of
the matrix. So we can think of a matrix as moving a vector into a subspace, and
we call that subspace the column space of the matrix C(A). In the case of a linear
transformation, we call this subspace the range, R(T ), or we might call it the
image. A projector is a square matrix which moves vectors into a subspace (like
any matrix can), but fixes vectors already in the subspace. This property earns a
projector the moniker idempotent. We will see that projectors have a variety of
interesting properties.

1.6.1 Oblique Projectors

Definition 7. A square matrix P is a projector if P 2 = P .

A projector fixes vectors in its column space.

Lemma 1.17. Suppose P is a projector and x ∈ C(P ). Then Px− x = 0.

Proof. Since x ∈ C(P ), there is a vector w such that Pw = x. Then

Px− x = P (Pw)− Pw = P 2w − Pw = Pw − Pw = 0.

For a general vector, the difference between the vector and its image under a
projector may not always be the zero vector, but it will be a vector in the null space
of the projector.

Lemma 1.18. Suppose P is a projector of size n and x ∈ Cn is any vector. Then
Px− x ∈ N (P ). Furthermore, N (P ) = {Px− x |x ∈ Cn}.

Proof. First,
P (Px− x) = P 2x− Px = Px− Px = 0.

To establish the second half of the claimed set equality, suppose z ∈ N (P ), then

z = 0− (−z) = P (−z)− (−z)

which establishes that z ∈ {Px− x |x ∈ Cn}.

When the null space of a projector has dimension one, it is easy to understand
the choice of the term “projector”. Imagine the setting in three dimensions where
the column space of the projector is a subspace of dimension two, which is physically
a plane through the origin. Imagine some vector as an arrow from the origin, or as
just the point that would be at the tip of the arrow. A light shines on the vector
and casts a shadow onto the plane (either another arrow, or just a point). This
shadow is the projection, the image of the projector. The image of the shadow is
unchanged, since shining the light on the vector that is the shadow will not move
it. What direction does the light come from? What is the vector that describes the
change from the vector to its shadow (projection)? For a vectorx, this direction is
Px − x, an element of the null space of P . So if N (P ) has dimension one, then
every vector is moved in the same direction, a multiple of a lone basis vector for
N (P ). This matches our assumptions about physical light from a distant source,
with rays all moving parallel to each other. Here is a simple example of just this
scenario.
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Example 8. Verify the following facts about the matrix P to understand that it
is a projector and to understand its geometry.

P =
1

13

11 −3 −5
−4 7 −10
−2 −3 8


1. P 2 = P

2. C(P ) =

〈
 1

0
−2
5

 ,
 0

1
−3
5


〉

3. N (P ) =

〈
1

2
1


〉

So P sends every vector onto a two-dimensional subspace, with an equation we
might write as 2x+3y+5z = 0 in Cartesian coordinates, or which we might describe
as the plane through the origin with normal vector n = 2~i + 3~j + 5~k. Vectors, or
points, are always moved in the direction of the vector d =~i+ 2~j + 1~k—this is the
direction the light is shining. Exercise 13 asks you to experiment further.

Exercise 13. Continue experimenting with Example 8 by constructing a vector not
in the column space of P . Compute its image under P and verify that it is a linear
combination of the basis vectors given in the example. Compute the direction your
vector moved and verify that it is a scalar multiple of the basis vector for the null
space given in the example. Finally, construct a new vector in the column space
and verify that it is unmoved by P .

Given a projector, we can define a complementary projector, which has some
interesting properties.

Definition 8. Given a projector P , the complementary projector to P is I − P .

The next lemma justifies calling I − P a projector.

Lemma 1.19. If P is a projector then I − P is also a projector.

Proof.
(I − P )

2
= I2 − P − P + P 2 = I − P − P + P = I − P

.

The complementary projector to P projects onto the null space of P .

Lemma 1.20. Suppose P is a projector. Then C(I − P ) = N (P ) and therefore
N (I − P ) = C(P ).

Proof. First, suppose x ∈ N (P ). Then

(I − P ) x = Ix− Px = x

demonstrating that x is a linear combination of the columns of I − P . So N (P ) ⊆
C(I − P ).

Now, suppose x ∈ C(I − P ). Then there is a vector w such that x = (I − P ) w.
Then

Px = P (I − P ) w = (P − P 2)w = Ow = 0.

So C(I − P ) ⊆ N (P ).
To establish the second conclusion, replace the projector P in the first conclusion

by the projector I − P .
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Using these facts about complementary projectors we find a simple direct sum
decomposition.

Theorem 1.21. Suppose P is a projector of size n. Then Cn = C(P )⊕N (P ).

Proof. First, we show that C(P ) ∩ N (P ) = {0}. Suppose x ∈ C(P ) ∩ N (P ). Since
x ∈ C(P ), Lemma 1.20 implies that x ∈ N (I − P ). So

x = x− 0 = x− Px = (I − P ) x = 0.

Using Lemma 1.20 again, N (P ) = C(I − P ). We show that an arbitrary vector
w ∈ Cn can be written as a sum of two vectors from the two column spaces,

w = Iw − Pw + Pw = (I − P ) w + Pw.

So Cn, C(P ) and N (P ) meet the hypotheses of Theorem 1.3, allowing us to
establish the direct sum.

1.6.2 Orthogonal Projectors

The projectors of the previous section would be termed oblique projectors since
no assumption was made about the direction that a vector was moved when pro-
jected. We remedy that situation now by defining an orthogonal projector to
be a projector where the complementary subspace is orthogonal to the space the
projector projects onto.

Definition 9. A projector P is orthogonal if N (P ) = (C(P ))
⊥

.

We know from Theorem 1.21 that for a projector P , Cn = C(P )⊕N (P ). We also

know by Corollary 1.11, that for any m×n matrix A, Cm = C(A)⊕C(A)
⊥

= C(A)⊕
N (A∗). So, superficially, we might expect orthogonal projectors to be Hermitian.
And so it is.

Theorem 1.22. Suppose P is a projector. Then P is an orthogonal projector if
and only if P is Hermitian.

Proof. Theorem HMIP says that Hermitian matrices are characterized by the prop-
erty that 〈Ax, y〉 = 〈x, Ay〉 for every choice of the vectors x,y. We will use this
result in both halves of the proof.

Suppose that x ∈ N (P ). Then for any y ∈ C(P ), there is a vector w that allows
us to write

〈x, y〉 = 〈x, Pw〉 = 〈Px, w〉 = 〈0, w〉 = 0.

So N (P ) ⊆ C(A)
⊥
.

Now suppose that x ∈ C(P )
⊥

. Consider,

〈Px, Px〉 =
〈
P 2x, x

〉
= 〈Px, x〉 = 0.

By Theorem PIP, we conclude that Px = 0 and x ∈ N (P ). So C(A)
⊥ ⊆ N (P )

and we have establish the set equality of Definition 9.
Let u,v ∈ Cn be any two vectors. Decompose each into two pieces, the first

from the column space, the second from the null space, according to Theorem 1.21.
So

u = u1 + u2 v = v1 + v2
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with u1,v1 ∈ C(P ) and u2,v2 ∈ N (P ). Then

〈Pu, v〉 = 〈Pu1 + Pu2, v1 + v2〉 = 〈Pu1, v1 + v2〉
= 〈u1, v1 + v2〉 = 〈u1, v1〉+ 〈u1, v2〉 = 〈u1, v1〉

〈u, Pv〉 = 〈u1 + u2, Pv1 + Pv2〉 = 〈u1 + u2, Pv1〉
= 〈u1 + u2, v1〉 = 〈u1, v1〉+ 〈u2, v1〉 = 〈u1, v1〉

Since 〈Pu, v〉 = 〈u, Pv〉 for all choices of u,v ∈ Cn, Theorem HMIP, establishes
that P is Hermitian.

There is an easy recipe for creating orthogonal projectors onto a given subspace.
We will first informally motivate the construction, then give the formal proof. Sup-
pose U is a subspace with a basis u1, u2, u3, . . . , uk and let A be a matrix with
these basis vectors as the columns. Let P denote the desired orthogonal projector,
and consider its action on an arbitrary vector x. To project onto U , we must have
Px ∈ C(A), so there is a vector w such that Px = Aw. The orthogonality condition
will be satisfied if Px−x is orthogonal to every vector of U . It is enough to require
orthogonality to each basis vector of U , and hence to each column of A. So we have

A∗ (Px− x) = 0

A∗Aw −A∗x = 0

A∗Aw = A∗x

As A has full rank, A∗A is nonsingular (〈〈adjoint-A is nonsingular result〉〉), so we
can employ its inverse to find

Px = Aw = A (A∗A)
−1
A∗x

This suggests that P = A (A∗A)
−1
A∗. And so it is.

Theorem 1.23. Suppose U is a subspace and A is a matrix whose columns form
a basis of U . Then P = A (A∗A)

−1
A∗ is an orthogonal projector onto U .

Proof. Because A is the leftmost term in the product for P , C(P ) ⊆ C(A). Because

(A∗A)
−1
A∗ has full (column) rank, C(A) ⊆ C(P ). So the image of the projector is

exactly U .

Now we verify that P is a projector.

P 2 =
(
A (A∗A)

−1
A∗
)(

A (A∗A)
−1
A∗
)

=A (A∗A)
−1

(A∗A) (A∗A)
−1
A∗

=A (A∗A)
−1
A∗

=P

And lastly, orthogonality against a basis of U .

A∗ (Px− x) = A∗A (A∗A)
−1
A∗x−A∗x

= A∗x−A∗x
= 0
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Suppose the basis vectors of U described in Theorem 1.23 form an orthonormal
set, and in acknowledgment we denote the matrix with these vectors as columns
by Q. Then the projector simplifies to P = Q (Q∗Q)

−1
Q∗ = QQ∗. The other

interesting special case is when U is 1-dimensional (a “line”). Then A∗A is just
the square of the norm of the lone basis vector. With this scalar moved out of the
way, the remaining computation, AA∗, is an outer product that results in a rank 1
matrix (as we would expect).

Exercise 14. Illustrate Theorem 1.22 by proving directly that the orthogonal pro-
jector described in Theorem 1.23 is Hermitian.

Exercise 15. Construct the orthogonal projector onto the line spanned by

v =


4
2
1
10

 .
Illustrate its use by projecting some vector not on the line, and verifying that the
difference between the vector and its projection is orthogonal to the line.

Exercise 16. Construct the orthogonal projector onto the subspace

U =

〈


1
1
1
1

 ,


4
2
2
5



〉
.

Illustrate its use by projecting some vector not in the subspace, and verifying that
the difference between the vector and its projection is orthogonal to the line.

Exercise 17. Redo Exercise 16 but first convert the basis for U to an orthonor-
mal basis via the Gram-Schmidt process Theorem GSP and then use the simpler
construction applicable to the case of an orthonormal basis.

1.7 Normal Matrices

Normal matrices comprise a broad class of interesting matrices, many of which you
probably already know by other names. But they are most interesting since they
define exactly which matrices we can diagonalize via a unitary matrix. This is the
upcoming Theorem 〈〈orthonormal diagonalization〉〉.

Definition 10. The square matrix A is normal if A∗A = AA∗.

So a normal matrix commutes with its adjoint. Part of the beauty of this
definition is that it includes many other types of matrices. A diagonal matrix will
commute with its adjoint, since the adjoint is again diagonal and the entries are
just conjugates of the entries of the original diagonal matrix. A Hermitian (self-
adjoint) matrix (Definition HM) will trivially commute with its adjoint, since the
two matrices are the same. A real, symmetric matrix is Hermitian, so these matrices
are also normal. A unitary matrix (Definition UM) has its adjoint as its inverse,
and inverses commute (Theorem OSIS), so unitary matrices are normal. Another
class of normal matrices is the skew-symmetric matrices. However, these broad
classes of matrices do not capture all of the normal matrices, as the next example
shows.



26 CHAPTER 1. THE FUNDAMENTALS

Example 9. Consider the matrix

[
1 −1
1 1

]
. Then

[
1 −1
1 1

] [
1 1
−1 1

]
=

[
2 0
0 2

]
=

[
1 1
−1 1

] [
1 −1
1 1

]
so we see by Definition 10 that A is normal. However, notice that A is not symmetric
(hence, as a real matrix, not Hermitian), not unitary, and not skew-symmetric.

1.8 Positive Semi-Definite Matrices

Positive semi-definite matrices (and their cousins, positive definite matrices) are
square matrices which in many ways behave like non-negative (respectively, positive)
real numbers. These results will be useful as we study various matrix decompositions
in Chapter 2.

Definition 11. A square matrix A of size n is positive semi-definite if A is
Hermitian and for all x ∈ Cn, 〈x, Ax〉 ≥ 0.

For a definition of positive definite replace the inequality in the definition
with a strict inequality, and exclude the zero vector from the vectors x required to
meet the condition. Similar variations allow definitions of negative definite and
negative semi-definite.

Our first theorem in this section gives us an easy way to build positive semi-
definite matrices.

Theorem 1.24. Suppose that A is any m×n matrix. Then the matrices A∗A and
AA∗ are positive semi-definite matrices.

Proof. We will give the proof for the first matrix, the proof for the second is entirely
similar. First we check that A∗A is Hermitian, with an appeal to Definition HM,

(A∗A)
∗

= A∗ (A∗)
∗

= A∗A

Second, for any x ∈ Cn, Theorem AIP and Theorem PIP give,

〈x, A∗Ax〉 =
〈
(A∗)

∗
x, Ax

〉
= 〈Ax, Ax〉 ≥ 0

which is the second condition for a positive semi-definite matrix.

A statement very similar to the converse of this theorem is also true. Any
positive semi-definite matrix can be realized as the product of a square matrix, B,
with its adjoint, B∗. (See ?? after studying this entire section.) The matrices A∗A
and AA∗ will be important later when we define singular values in Section 〈〈section-
SVD〉〉.

Positive semi-definite matrices can also be characterized by their eigenvalues,
without any mention of inner products. This next result further reinforces the
notion that positive semi-definite matrices behave like non-negative real numbers.

Theorem 1.25. Suppose that A is a Hermitian matrix. Then A is a positive semi-
definite matrix if and only if every eigenvalue λ of A has λ ≥ 0.

Proof. First notice first that since we are considering only Hermitian matrices in
this theorem, it is always possible to compare eigenvalues with the real number zero,
since eigenvalues of Hermitian matrices are all real numbers (Theorem HMRE).
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(⇒) Let x 6= 0 be an eigenvector of A for λ. Since A is positive semi-definite,

λ 〈x, x〉 = 〈x, λx〉 = 〈x, Ax〉 ≥ 0

By Theorem PIP we know 〈x, x〉 > 0, so we conclude that λ ≥ 0.
(⇐) Let n denote the size of A. Suppose that λ1, λ2, λ3, . . . , λn are the

eigenvalues of the Hermitian matrix A, each of which is non-negative. Let B =
{x1, x2, x3, . . . , xn} be a set of associated eigenvectors for these eigenvalues. Since
a Hermitian matrix is normal (10), Theorem OBNM allows us to choose B to also
be an orthonormal basis of Cn. Choose any x ∈ Cn and let a1, a2, a3, . . . , an be
the scalars guaranteed by the spanning property of the basis B, so x =

∑n
i=1 aixi.

Since we have presumed A is Hermitian, we need only check the second condition
of the definition. The use of an orthonormal basis provides the simplification for
the last equality.

〈x, Ax〉 =

〈
n∑
i=1

aixi, A

n∑
j=1

ajxj

〉

=

〈
n∑
i=1

aixi,

n∑
j=1

ajAxj

〉

=

〈
n∑
i=1

aixi,

n∑
j=1

ajλjxj

〉

=

n∑
i=1

n∑
j=1

〈aixi, ajλjxj〉

=

n∑
i=1

n∑
j=1

aiajλj 〈xi, xj〉

=

n∑
i=1

aiaiλi 〈xi, xi〉+

n∑
i=1

n∑
j=1
j 6=i

aiajλj 〈xi, xj〉

=

n∑
i=1

aiaiλi

The expression aiai is the modulus of ai squared, hence is always non-negative.
With the eigenvalues assumed non-negative, this final sum is clearly non-negative
as well, as desired.

As positive semi-definite matrices are defined to be Hermitian, they are then
normal and subject to orthonormal diagonalization (Theorem OD). Now consider
the interpretation of orthonormal diagonalization as a rotation to principal axes,
a stretch by a diagonal matrix and a rotation back (Subsection OD.OD). For a
positive semi-definite matrix, the diagonal matrix has diagonal entries that are
the non-negative eigenvalues of the original positive semi-definite matrix. So the
“stretching” along each axis is never a reflection.
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Chapter 2

Matrix Decompositions

A matrix decomposition is a way to express a matrix as a combination of other
matrices, which are ostensibly simpler matrices. The combination is often a product
of two or three matrices, though it can be a sum, as in the case of a rank one
decomposition (〈〈rank one decompositions〉〉). The constituent matrices are simpler
because they have many zero entries, or have many strategically placed entries that
are one, or the nonzero entries lie on the diagonal (or close by) or . . . . Furthermore,
the constituent matrices may be simpler because they have desirable properties that
make them eaier to work with, such as being nonsingular or triangular or Hermitian
or . . . . We will see examples of all of this behavior in this chapter.

There is a “Big Five” of matrix decompositions, which you will come to know
as the LU, QR, SVD, Schur and Cholesky. Every student of advanced linear alge-
bra should become intimately familiar with these basic decompositions. There are
many other ways to decompose a matrix, and we will see these at other junctures.
Encyclopedic texts like Horn & Johnson, [?] or Watkins [?] are good places to begin
exploring more.

2.1 LU (Triangular) Decomposition

The LU decomposition begins with any matrix and describes it as a product
of a lower-triangular matrix (L) and an upper-triangular matrix (U). Hence the
customary shorthand name, “LU”. The term triangular decomposition might
be more evocative, if not more verbose.

You will notice that the LU decomposition feels very much like reduced row-
echelon form, and in some ways could be considered an improvement. Triangular
matrices are defined in Subsection Subsection OD.TM and two basic facts are that
the product of two triangular matrices “of the same type” (i.e. both upper or both
lower) is again of that type (Theorem PTMT) and the inverse of a nonsingular
triangular matrix will be triangular of the same type (Theorem ITMT).

2.1.1 LU Decomposition, Nonsingular Case

Theorem 2.1. Suppose A is a square matrix of size n. Let Ak be the k× k matrix
formed from A by taking the first k rows and the first k columns. Suppose that Ak
is nonsingular for all 1 ≤ k ≤ n. Then there is a lower triangular matrix L with
all of its diagonal entries equal to 1 and an upper triangular matrix U such that
A = LU . Furthermore, this decomposition is unique.

29
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Proof. We will row reduce A to a row-equivalent upper triangular matrix through a
series of row operations, forming intermediate matrices A′j , 1 ≤ j ≤ n, that denote
the state of the conversion after working on column j. First, the lone entry of A1

is [A]11 and this scalar must be nonzero if A1 is nonsingular (Theorem SMZD). We
can use row operations Definition RO of the form αR1 + Rk, 2 ≤ k ≤ n, where
α = − [A]1k / [A]11 to place zeros in the first column below the diagonal. The first
two rows and columns of A′1 are a 2×2 upper triangular matrix whose determinant
is equal to the determinant of A2, since the matrices are row-equivalent through a
sequence of row operations strictly of the third type (Theorem DRCMA). As such
the diagonal entries of this 2× 2 submatrix of A′1 are nonzero. We can employ this
nonzero diagonal element with row operations of the form αR2 + Rk, 3 ≤ k ≤ n
to place zeros below the diagonal in the second column. We can continue this
process, column by column. The key observations are that our hypothesis on the
nonsingularity of the Ak will guarantee a nonzero diagonal entry for each column
when we need it, that the row operations employed are always of the third type
using a multiple of a row to transform another row with a greater row index, and
that the final result will be a nonsingular upper triangular matrix. This is the
desired matrix U .

Each row operation described in the previous paragraph can be accomplished
with matrix multiplication by the appropriate elementary matrix (Theorem EM-

DRO). Since every row operation employed is adding a multiple of a row to a
subsequent row these elementary matrices are of the form Ej,k (α) with j < k. By
Definition ELEM, these matrices are lower triangular with every diagonal entry
equal to 1. We know that the product of two such matrices will again be lower
triangular (Theorem PTMT), but also, as you can also easily check using a proof
with a style similar to one above, that the product maintains all 1’s on the diagonal.
Let E1, E2, E3, . . . , Em denote the elementary matrices for this sequence of row
operations. Then

U = EmEm−1 . . . E3E2E1A = L′A

where L′ is the product of the elementary matrices, and we know L′ is lower trian-
gular with all 1’s on the diagonal. Our desired matrix L is then L = (L′)

−1
. By

Theorem ITMT, L is lower triangular with all 1’s on the diagonal and A = LU , as
desired.

The process just described is deterministic. That is, the proof is constructive,
with no freedom for each of us to walk through it differently. But could there be
other matrices with the same properties as L and U that give such a decomposition
of A? In other words, is the decomposition unique (Proof Technique U)? Suppose
that we have two triangular decompositions, A = L1U1 and A = L2U2. Since A is
nonsingular, two applications of Theorem NPNT imply that L1, L2, U1, U2 are all
nonsingular. We have

L−12 L1 = L−12 InL1

= L−12 AA−1L1

= L−12 L2U2 (L1U1)
−1
L1

= L−12 L2U2U
−1
1 L−11 L1

= InU2U
−1
1 In

= U2U
−1
1

Theorem ITMT tells us that L−12 is lower triangular and has 1’s as the diagonal
entries. By Theorem PTMT, the product L−12 L1 is again lower triangular, and it
is simple to check (as before) that the diagonal entries of the product are again
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all 1’s. By the entirely similar process we can conclude that the product U2U
−1
1

is upper triangular. Because these two products are equal, their common value is
a matrix that is both lower triangular and upper triangular, with all 1’s on the
diagonal. The only matrix meeting these three requirements is the identity matrix
(Definition IM). So, we have,

In = L−12 L1 ⇒ L2 = L1 In = U2U
−1
1 ⇒ U1 = U2

which establishes the uniqueness of the decomposition.

Studying the proofs of some previous theorems will perhaps give you an idea for
an approach to computing a triangular decomposition. In the proof of Theorem

CINM we augmented a nonsingular matrix with an identity matrix of the same
size, and row-reduced until the original matrix became the identity matrix (as we
knew in advance would happen, since we knew Theorem NMRRI). Theorem PEEF

tells us about properties of extended echelon form, and in particular, that B = JA,
where A is the matrix that begins on the left, and B is the reduced row-echelon form
of A. The matrix J is the result on the right side of the augmented matrix, which
is the result of applying the same row operations to the identity matrix. We should
recognize now that J is just the product of the elementary matrices (Subsection
DM.EM) that perform these row operations. Theorem ITMT used the extended
echelon form to discern properties of the inverse of a triangular matrix. Theorem

TD proves the existence of a triangular decomposition by applying specific row
operations, and tracking the relevant elementary row operations. It is not a great
leap to combine these observations into a computational procedure.

To find the triangular decomposition of A, augment A with the identity matrix
of the same size and call this new 2n×n matrix, M . Perform row operations on M
that convert the first n columns to an upper triangular matrix. Do this using only
row operations that add a scalar multiple of one row to another row with higher
index (i.e. lower down). In this way, the last n columns of M will be converted
into a lower triangular matrix with 1’s on the diagonal (since M has 1’s in these
locations initially). We could think of this process as doing about half of the work
required to compute the inverse of A. Take the first n columns of the row-equivalent
version of M and call this matrix U .

Take the final n columns of the row-equivalent version of M and call this matrix
L′. Then by a proof employing elementary matrices, or a proof similar in spirit to
the one used to prove Theorem PEEF, we arrive at a result similar to the second
assertion of Theorem PEEF. Namely, U = L′A. Multiplication on the left, by the
inverse of L′, will give us a decomposition of A (which we know to be unique).
Ready? Lets try it.

Example 10. In this example, we will illustrate the process for computing a tri-
angular decomposition, as described in the previous paragraphs. Consider the non-
singular square matrix A of size 4,

A =


−2 6 −8 7
−4 16 −14 15
−6 22 −23 26
−6 26 −18 17


We form M by augmenting A with the size 4 identity matrix I4. We will perform

the allowed operations, column by column, only reporting intermediate results as we
finish converting each column. It is easy to determine exactly which row operations
we perform, since the final four columns contain a record of each such operation.
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We will not verify our hypotheses about the nonsingularity of the Ak, since if we
do not have these conditions, we will reach a stage where a diagonal entry is zero
and we cannot create the row operations we need to zero out the bottom portion
of the associated column. In other words, we can boldly proceed and the necessity
of our hypotheses will become apparent.

M =


−2 6 −8 7 1 0 0 0
−4 16 −14 15 0 1 0 0
−6 22 −23 26 0 0 1 0
−6 26 −18 17 0 0 0 1



→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 4 1 5 −3 0 1 0
0 8 6 −4 −3 0 0 1



→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 0 −1 4 −1 −1 1 0
0 0 2 −6 1 −2 0 1



→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 0 −1 4 −1 −1 1 0
0 0 0 2 −1 −4 2 1


So at this point, we have U and L′,

U =


−2 6 −8 7
0 4 2 1
0 0 −1 4
0 0 0 2

 L′ =


1 0 0 0
−2 1 0 0
−1 −1 1 0
−1 −4 2 1


Then by whatever procedure we like (such as Theorem CINM), we find

L = (L′)
−1

=


1 0 0 0
2 1 0 0
3 1 1 0
3 2 −2 1


It is instructive to verify that indeed LU = A.

2.1.2 Solving Systems with Triangular Decompositions

In this section we give an explanation of why you might be interested in a triangular
decomposition for a matrix. Many of the computational problems in linear algebra
revolve around solving large systems of equations, or nearly equivalently, finding
inverses of large matrices. Suppose we have a system of equations with coefficient
matrix A and vector of constants b, and suppose further that A has the triangular
decomposition A = LU .

Let y be the solution to the linear system LS(L, b), so that by Theorem

SLEMM, we have Ly = b. Notice that since L is nonsingular, this solution is
unique, and the form of L makes it trivial to solve the system. The first component
of y is determined easily, and we can continue on through determining the compo-
nents of y, without even ever dividing. Now, with y in hand, consider the linear
system, LS(U, y). Let x be the unique solution to this system, so by Theorem
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SLEMM we have Ux = y. Notice that a system of equations with U as a coefficient
matrix is also straightforward to solve, though we will compute the bottom entries
of x first, and we will need to divide. The upshot of all this is that x is a solution
to LS(A, b), as we now show,

Ax = LUx = L (Ux) = Ly = b

An application of Theorem SLEMM demonstrates that x is a solution to LS(A, b).

Example 11. Here we illustrate the previous discussion, recycling the decompo-
sition found previously in Example TD4. Consider the linear system LS(A, b)
with

A =


−2 6 −8 7
−4 16 −14 15
−6 22 −23 26
−6 26 −18 17

 b =


−10
−2
−1
−8


First we solve the system LS(L, b) (see Example TD4 for L),

y1 = −10

2y1 + y2 = −2

3y1 + y2 + y3 = −1

3y1 + 2y2 − 2y3 + y4 = −8

Then

y1 = −10

y2 = −2− 2y1 = −2− 2(−10) = 18

y3 = −1− 3y1 − y2 = −1− 3(−10)− 18 = 11

y4 = −8− 3y1 − 2y2 + 2y3 = −8− 3(−10)− 2(18) + 2(11) = 8

so

y =


−10
18
11
8


Then we solve the system LS(U, y) (see Example TD4 for U),

−2x1 + 6x2 − 8x3 + 7x4 = −10

4x2 + 2x3 + x4 = 18

−x3 + 4x4 = 11

2x4 = 8

Then

x4 = 8/2 = 4

x3 = (11− 4x4) /(−1) = (11− 4(4)) /(−1) = 5

x2 = (18− 2x3 − x4) /4 = (18− 2(5)− 4) /4 = 1

x1 = (−10− 6x2 + 8x3 − 7x4) /(−2) = (−10− 6(1) + 8(5)− 7(4)) /(−2) = 2
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And so

x =


2
1
5
4



is the solution to LS(U, y) and consequently is the unique solution to LS(A, b), as
you can easily verify.

2.1.3 Computing Triangular Decompositions

It would be a simple matter to adjust the algorithm for converting a matrix to
reduced row-echelon form and obtain an algorithm to compute the triangular de-
composition of the matrix, along the lines of Example TD4 and the discussion
preceding this example. However, it is possible to obtain relatively simple formu-
las for the entries of the decomposition, and if computed in the proper order, an
implementation will be straightforward. We will state the result as a theorem and
then give an example of its use.

Theorem 2.2. Suppose that A is a square matrix of size n with a triangular de-
composition A = LU , where L is lower triangular with diagonal entries all equal to
1, and U is upper triangular. Then

[U ]ij = [A]ij −
i−1∑
k=1

[L]ik [U ]kj 1 ≤ i ≤ j ≤ n

[L]ij =
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj

)
1 ≤ j < i ≤ n

Proof. Consider a single scalar product of an entry of L with an entry of U of the
form [L]ik [U ]kj . By Definition LTM, if k > i then [L]ik = 0, while Definition

UTM, says that if k > j then [U ]kj = 0. So we can combine these two facts to
assert that if k > min(i, j), [L]ik [U ]kj = 0 since at least one term of the product
will be zero. Employing this observation,

[A]ij =

n∑
k=1

[L]ik [U ]kj

=

min(i, j)∑
k=1

[L]ik [U ]kj
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Now, assume that 1 ≤ i ≤ j ≤ n,

[U ]ij = [A]ij − [A]ij + [U ]ij

= [A]ij −
min(i, j)∑
k=1

[L]ik [U ]kj + [U ]ij

= [A]ij −
i∑

k=1

[L]ik [U ]kj + [U ]ij

= [A]ij −
i−1∑
k=1

[L]ik [U ]kj − [L]ii [U ]ij + [U ]ij

= [A]ij −
i−1∑
k=1

[L]ik [U ]kj − [U ]ij + [U ]ij

= [A]ij −
i−1∑
k=1

[L]ik [U ]kj

And for 1 ≤ j < i ≤ n,

[L]ij =
1

[U ]jj

(
[L]ij [U ]jj

)
=

1

[U ]jj

(
[A]ij − [A]ij + [L]ij [U ]jj

)

=
1

[U ]jj

[A]ij −
min(i, j)∑
k=1

[L]ik [U ]kj + [L]ij [U ]jj


=

1

[U ]jj

(
[A]ij −

j∑
k=1

[L]ik [U ]kj + [L]ij [U ]jj

)

=
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj − [L]ij [U ]jj + [L]ij [U ]jj

)

=
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj

)

At first glance, these formulas may look exceedingly complex. Upon closer
examination, it looks even worse. We have expressions for entries of U that depend
on other entries of U and also on entries of L. But then the formula for entries of
L depend on entries from L and entries from U . Do these formula have circular
dependencies? Or perhaps equivalently, how do we get started? The key is to be
organized about the computations and employ these two (similar) formulas in a
specific order. First compute the first row of L, followed by the first column of U .
Then the second row of L, followed by the second column of U . And so on. In this
way, all of the values required for each new entry will have already been computed
previously.

Of course, the formula for entries of L require division by diagonal entries of
U . These entries might be zero, but in this case A is nonsingular and does not
have a triangular decomposition. So we need not check the hypothesis carefully
and can launch into the arithmetic dictated by the formulas, confident that we will
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be reminded when a decomposition is not possible. Note that these formula give
us all of the values that we need for the decomposition, since we require that L
has 1’s on the diagonal. If we replace the 1’s on the diagonal of L by zeros, and
add the matrix U , we get an n × n matrix containing all the information we need
to resurrect the triangular decomposition. This is mostly a notational convenience,
but it is a frequent way of presenting the information. We’ll employ it in the next
example.

Example 12. We illustrate the application of the formulas in Theorem TDEE for
the 6× 6 matrix A.

A =


3 3 −3 −2 −1 0
−6 −4 5 2 4 2
9 9 −7 −7 0 1
−6 −10 8 10 −1 −7
6 4 −9 −2 −10 1
9 3 −12 −3 −21 −2


Using the notational convenience of packaging the two triangular matrices into

one matrix, and using the ordering of the computations mentioned above, we display
the results after computing a single row and column of each of the two triangular
matrices.

3 3 −3 −2 −1 0
−2
3
−2
2
3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0
−2 −2
2 −1
3 −3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0
2 −1 −2
3 −3 −3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1
3 −3 −3 −3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1 1 2
3 −3 −3 −3 0




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1 1 2
3 −3 −3 −3 0 −2


Splitting out the pieces of this matrix, we have the decomposition,

L =


1 0 0 0 0 0
−2 1 0 0 0 0
3 0 1 0 0 0
−2 −2 0 1 0 0
2 −1 −2 −1 1 0
3 −3 −3 −3 0 1

 U =


3 3 −3 −2 −1 0
0 2 −1 −2 2 2
0 0 2 −1 3 1
0 0 0 2 1 −3
0 0 0 0 1 2
0 0 0 0 0 −2


2.1.4 Triangular Decomposition with Pivoting

The hypotheses of Theorem TD can be weakened slightly to include matrices where
not every Ak is nonsingular. The introduces a rearrangement of the rows and
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columns of A to force as many as possible of the smaller submatrices to be nonsin-
gular. Then permutation matrices also enter into the decomposition. We will not
present the details here, but instead suggest consulting a more advanced text on
matrix analysis.

2.2 QR (Gram-Schmidt) Decomposition

The QR decomposition begins with any matrix and describes it as a product of
a unitary matrix (Q) and an upper triangular matrix (R). Hence the customary
shorthand name, “QR”. If the LU decomposition is reminiscent of reduced row-
echelon form, then the QR decomposition is reminiscent of the Gram-Schmidt
process (see Subsection Subsection 0.GSP).

2.2.1 QR Decomposition via Gram-Schmidt

The Gram-Schmidt procedure is based on Theorem GSP. We begin with a set
of linearly independent vectors and progressively convert them into a new set of
nonzero vectors that form an orthogonal set, which can be easily converted to an
orthonormal set. An orthonormal set is a wondrous thing, so the other portion of
the conclusion is often overlooked. The new set of vectors spans the same subspace
as the space spanned by the original set. This is half the reason that the Gram-
Schmidt procedure is so useful.

As a preview of our main theorem, let’s convert this idea into the language of
matrices for a special case. Let A be a square matrix of size n. Take the columns
of A as a set of vectors, which will form a basis of Cn. Apply the Gram-Schmidt
procedure to this set of n vectors. The manufacture of the i-th vector of this new
set is the i-th vector of the original set, added to a linear combination of vectors 1
through i−1 of the new set. If we recursively unpack these linear combinations, we
can express each new vector as a linear combination of vectors 1 through i of the
original set, where the i-th vector has a coefficient of 1. Record the scalars of this
linear combination in a column vector, whose last nonzero entry is 1. Make these
column vectors the columns of a square matrix, R′, of size n. Define Q = AR′.

By the Gram-Schmidt procedure, the columns of Q are an orthogonal set of
nonzero vetors, and so Q∗Q will be a diagonal matrix with nonzero entries. The
matrix R′ is square, upper-triangular, and each diagonal entry is 1. Hence R′ is
invertible, so let R denote the inverse, which is again upper-triangular with diagonal
entries equal to 1. We then obtain A = QR. It is a simple matter to scale the
columns of Q to form an orthonormal set, and the requisite scaling of the columns
of R′ will not impede the existence of R, though we can only claim diagonal entries
are nonzero. In this way, we can claim that Q is a unitary matrix.

A QR decomposition can be created for any matrix —it need not be square and
it need not have full rank. The matrix Q is unitary, and R is upper triangular.
Thus, each column of A can be expressed as a linear combination of the columns of
Q, which form an orthonormal basis. So the column space of A is spanned by an
orthonormal subset of the columns of Q, giving us the essence of the Gram-Schmidt
procedure without the hypothesis that our original set is linearly independent. For
the statement of Theorem GSP, it was a convenience to hypothesize that S is
linearly independent. Can you examine the proof and see what changes are required
if we lift this hypothesis?

We now state, and prove, a sequence of theorems which solidify the discussion
above and generalize to rectangular matrices that may not have full rank.
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Theorem 2.3. Suppose that A is an m×n matrix of rank n. Then there exists an
m× n matrix Q whose columns form an orthonormal set, and an upper-triangular
matrix R of size n with positive diagonal entries, such that A = QR.

Proof. Outline: Use Gram-Schmidt to successively build the columns. Scale each
column by positive/negative norm to get positive diagonal entries in R.

Notice that the rank n condition of Theorem 2.3 necessarily implies m ≥ n. We
can expand Q and R simultaneously to get a decomposition where Q is a unitary
matrix.

The column space of a matrix is an important property of a matrix. For example,
the column space of the coefficient matrix of a system of equations is the set of
vectors that can be used to form a consistent system when paired with the coefficient
matrix (Theorem CSCS). Not only does Q have a column space equal to that of A,
the first i columns of Q are a basis for the space spanned by the first i columns of
A, for 1 ≤ i ≤ n.

Theorem 2.4. Suppose that A is an m× n matrix of rank n. Then there exists a
unitary matrix Q of size m and an upper-triangular m × n matrix R with positive
diagonal entries such that A = QR.

Proof. Begin with a decomposition A = Q′R′ as given by Theorem 2.3. Create
the matrix Q by adding m − n columns to Q′ by the following process. Find a
vector outside the span of the current set of columns (Theorem ELIS). Apply the
Gram-Schmidt procedure (Theorem GSP) to the set of columns plus this one new
vector. The current columns will be unaffected by an additional application of the
Gram-Schmidt procedure (so in a practical application it is unneccessary). The one
additional vector will be orthogonal to the others, and can be scaled to have norm
1. add this vector as a new column of Q, preserving the property that the columns
are an orthonormal set.

For each of the m−n new columns, add a new zero row to R′ creating the m×n
matrix R, with QR = Q′R′ = A.

The decomposition of Theorem 2.3 is referred to as a thin decomposition, while
the decomposition of Theorem 2.4 is referred to as a full decomposition.

What happens if A does not have full rank? Then there will be some relation
of linear dependence on the columns of the matrix. In the course of working the
Gram-Schmidt procedure, as in the construction given for the proof of Theorem 2.3,
this will be discovered when the newly created vector is the zero vector. No matter,
we simply add any vector as the next column of Q which will preserve the columns
as an orthonormal set. This vector can be determined in a fashion entirely similar
to the device used in the proof of Theorem 2.4. However, this nearly arbitrary
choice outside the span of the current set of columns, requires that we add a row of
zeros in R and lose our positive diagonal entry. The ultimate price for this is that
certain uniqueness results 〈〈uniqueness of QR〉〉 no longer hold.

For the most general case of a QR decomposition for a rectangular matrix of
arbitrary rank, we could fashion a proof based on the discussion of the previous
paragraph. However, while Gram-Schmidt provides a good theoretical grounding
for the QR decomposition, in numerical contexts its performance is weak (〈〈TB,
Lecture 7 to 10〉〉). Instead we give a constructive proof based on Householder
reflections.
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2.2.2 QR Decomposition via Householder Reflections

Householder reflections provide a usefull tool for creating the zero entries required
in each column of R, and will provide an algorithm with better performance (speed
and accuracy), compared to the more intuitive approach of the Gram-Schmidt pro-
cedure.

Theorem 2.5. Suppose that A is an m × n matrix. Then there exists a unitary
matrix Q of size m and an upper-triangular m× n matrix R such that A = QR.

Proof. We proceed by induction on n. When n = 1 form the Householder matrix,
P , which will convert all of the entries of the lone column of A into zeros, except the
first one (Theorem 1.16). Denote the resulting column vector as the matrix R, which
is upper triangular. Define Q = P ∗, which is unitary. Then A = P ∗PA = QR.

Now consider general n. Let Â be the first n− 1 columns of A, so by induction
there is a unitary matrix Q̂ of size m and an upper-triangular matrix R̂ providing
a QR decomposition of Â. Partition R̂ into a square upper triangular matrix R1

comprised of the first n− 1 rows of R̂, leaving a second matrix with m−n+ 1 rows
and zero in every entry. Let v denote the final column of A and compute w = Q̂∗v.
Partition w into two pieces by denoting the first n − 1 entries as w1, and entries
n through m as w2. Compute the Householder matrix, P , of size m − n + 1 that
takes w2, to a multiple of e1 (Theorem 1.16). We have all the pieces in place, so
now observe: [

In−1 0
0 P

]
Q̂∗A =

[
In−1 0

0 P

]
Q̂∗
[
Â v

]
=

[
In−1 0

0 P

] [
Q̂∗Â Q̂∗v

]
=

[
In−1 0

0 P

] [
R̂ w

]
=

[
In−1 0

0 P

] [
R1 w1

0 w2

]
=

[
R1 w1

0 Pw2

]
Notice that the first two matrices in these equations are unitary, and hence so is

their product. Because of the action of the Householder matrix, the final matrix is
upper triangular. If we move the unitary matrix to the other side of the equation,
with an inverse (adjoint), we arrive at a QR decomposition of A and complete the
induction step.

The inductive proof of Theorem 2.5 will automatically provide a recipe for a
recursive procedure to compute a QR decomposition. But recursion is rarely, if
ever, a good idea for efficiency. Fortunately, the proof suggests a better procedure.
Work on A column-by-column, progressively using Householder matrices to “zero
out” each column below the diagonal entry. The construction of such a Householder
matrix will require a nonzero entry in the diagonal entry. A row swap, accomplished
by a (unitary) permutation matrix, can move a nonzero entry from elsewhere in the
column. Of course, if the whole remainder of the column is all zeros, then we can
just move on to the next column.

Notice how the unitary matrices change over the course of these iterations. In
later steps each unitary matrix has a larger identity matrix as the block in the
upper-left corner of the matrix. So if a product of these matrices is required, it can
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be more efficient to begin building up the product starting with the last unitary
matrix. Of course, order matters in matrix multiplication, and maybe you need
the product in the reverse order. No matter, compute the transpose of the desired
matrix, which necessarily will reverse the order of the product. Once the product
is concluded, then transpose the result.

Example 13. We illustrate the algorithm suggested by the proof of Theorem 2.5
on a 4× 4 nonsingular matrix A. All of our computations were performed in Sage
using algebraic numbers, so there were no approximations of irrational square roots
as floating point numbers. However, we do give each matrix here with the final
exact entries displayed as approximations with a limited number of places. At step
i, 1 ≤ i ≤ 3, we display the unitary Householder matrix, Qi, and the partially upper
triangular matrix Ri = Qi . . . Q1A.

A =


4 −5 −7 −4
1 −1 −1 −2
0 0 1 −1
−1 5 8 −8



i = 1 Q1 =


0.94 0.24 0.0 −0.24
0.24 0.03 0.0 0.97
0.0 0.0 1.0 0.0
−0.24 0.97 0.0 0.03

 R1 =


4.24 −6.13 −8.72 −2.36
0.0 3.65 6.09 −8.77
0.0 0.0 1.0 −1.0
0.0 0.35 0.91 −1.23



i = 2 Q2 =


1.0 0.0 0.0 0.0
0.0 0.99 0.0 0.01
0.0 0.0 1.0 0.0
0.0 0.01 0.0 −0.99

 R2 =


4.24 −6.13 −8.72 −2.36
0.0 3.67 6.15 −8.85
0.0 0.0 1.0 −1.0
0.0 0.0 −0.32 0.39



i = 3 Q3 =


1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.95 −0.31
0.0 0.0 −0.31 −0.95

 R3 =


4.24 −6.13 −8.72 −2.36
0.0 3.67 6.15 −8.85
0.0 0.0 1.05 −1.07
0.0 0.0 0.0 −0.06


So,

R = R3 =


4.2426 −6.1283 −8.721 −2.357

0.0 3.6667 6.1515 −8.8485
0.0 0.0 1.0504 −1.0701
0.0 0.0 0.0 −0.0612


and then R = Q3Q2Q1A, so

Q = Q∗1Q
∗
2Q
∗
3 =


0.9428 0.2121 −0.0787 −0.2448
0.2357 0.1212 0.2951 0.918

0.0 0.0 0.952 −0.306
−0.2357 0.9697 −0.0197 −0.0612


Notice how the product for Q involves progressively simpler matrices (bigger

identity matrix blocks) moving from right to left.

2.2.3 Solving Systems with a QR Decomposition

Consider the problem of solving a linear system Ax = b. Replace A by a QR
decomposition, to obtain QRx = b. Now, the inverse of the unitary matrix Q is its
adjoint, so we have the new system Rx = Q∗b. Since R is upper-triangular, the new
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system can be solved via back-solving, much as we did with an LU decomposition
(Subsection 2.1.2).

A primary advantage of this approach is that a unitary matrix is generally
well-behaved in numerical computations. Since the columns have unit norm, the
entries can never be too large. Many of the problems of floating-point arithmetic
come from combining numbers of grossly different magnitudes, and this is avoided
in computations with a unitary matrix, such as the matrix-vector product in the
rearrangement of a linear system in the previous paragraph.

What about the number of operations required? For a QR decomposition of
an m× n matrix via the Gram-Schmidt procedure the operation count is ∼ 2mn2.
When m ≥ n the determination of R can be accomplished in ∼ 2mn2− 2

3n
3 opera-

tions when using a sequence of Householder reflections ([?]). This includes storing
the Householder vector for each iteration, but not the computation of the House-
holder matrix itself, or the accumulated product of all the Householder matrices
into one grand unitary matrix Q. Notice that for a square matrix, when m = n,
the count is ∼ 4

3n
3, which is twice the cost of an LU factorization

If we use Householder reflections, then we must decide what we want to do
with Householder matrices. If we are solving a linear system, we can successively
multiply each new Householder matrix times the column vector on the right hand
side of the equation. Thus, we modify both sides of the equation in the same way,
producing equivalent systems as we go. In practice, the product of a column vector
by a Householder matrix can be accomplished very efficiently, and not by explicitly
forming the matrix. (See Exercise 11.) It should never be necessary to explicitly
form a Householder matrix, but instead the Householder vector should be enough
information to perform whatever computation is at hand.

2.2.4 Uniqueness of QR Decompositions

Generally, when A has full rank and we require that diagonal entries of R be positive,
we get a unique QR decomposition. Proving this will be easier once we learn about
Cholesky decompositions (Section 〈〈a section about Cholesky decompositions〉〉), so
we will defer a proof until then.

2.2.5 Final Thoughts

Exercise 18. Suppose that A is a nonsingular matrix with real entries. Then A
has a QR decomposition where (1) A = QR, (2) Q is unitary, and (3) R is upper
triangular with positive entries, (4) Q and R are also matrices with real entries.
Prove that this decomposition is unique. (So you may assume such a decomposition
exists, you are just being asked to establish uniqueness.)

Solution. Assume there are two such decompositions, so R1Q1 = A = R2Q2 and
rearrange to obtain R−12 R1 = Q2Q

∗
1. The left-hand side will be an upper triangular

matrix with positive diagonal entries. The right-hand side is a product of two
unitary matrices, hence is unitary, and its columns form an orthonormal set. Now,
viewing the columns of the left-hand matrix as an orthonormal set will allow you
to progressively conclude that the columns (from left to right) are the columns of
an identity matrix. Thus, R−12 R1 = I and R1 = R2, and similarly, Q1 = Q2.

2.3 Singular Value Decomposition

The singular value decomposition is one of the more useful ways to represent any
matrix, even rectangular ones. We can also view the singular values of a (rectan-
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gular) matrix as analogues of the eigenvalues of a square matrix.

2.3.1 Matrix-Adjoint Products

Our definitions and theorems in this section rely heavily on the properties of the
matrix-adjoint products (A∗A and AA∗). We start by examining some of the basic
properties of these two positive semi-definite matrices. Now would be a good time
to review the basic facts about positive semi-definite matrices in Section 1.8.

Theorem 2.6. Suppose that A is an m × n matrix and A∗A has rank r. Let
λ1, λ2, λ3, . . . , λp be the nonzero distinct eigenvalues of A∗A and let ρ1, ρ2, ρ3, . . . , ρq
be the nonzero distinct eigenvalues of AA∗. Then,

1. p = q.

2. The distinct nonzero eigenvalues can be ordered such that λi = ρi, 1 ≤ i ≤ p.

3. Properly ordered, the algebraic multiplicities of the nonzero eigenvalues are
identical, αA∗A (λi) = αAA∗ (ρi), 1 ≤ i ≤ p.

4. The rank of A∗A is equal to the rank of AA∗.

5. There is an orthonormal basis, {x1, x2, x3, . . . , xn} of Cn composed of eigen-
vectors of A∗A and an orthonormal basis, {y1, y2, y3, . . . , ym} of Cm com-
posed of eigenvectors of AA∗ with the following properties. Order the eigen-
vectors so that xi, r + 1 ≤ i ≤ n are the eigenvectors of A∗A for the zero
eigenvalue. Let δi, 1 ≤ i ≤ r denote the nonzero eigenvalues of A∗A. Then
Axi =

√
δiyi, 1 ≤ i ≤ r and Axi = 0, r+1 ≤ i ≤ n. Finally, yi, r+1 ≤ i ≤ m,

are eigenvectors of AA∗ for the zero eigenvalue.

Proof. Suppose that x ∈ Cn is any eigenvector of A∗A for a nonzero eigenvalue λ.
We will show that Ax is an eigenvector of AA∗ for the same eigenvalue, λ. First,
we ascertain that Ax is not the zero vector.

〈Ax, Ax〉 = 〈x, A∗Ax〉 = 〈x, λx〉 = λ 〈x, x〉

Since x is an eigenvector, x 6= 0, and by Theorem PIP, 〈x, x〉 6= 0. As λ was
assumed to be nonzero, we see that 〈Ax, Ax〉 6= 0. Again, Theorem PIP tells us
that Ax 6= 0.

Much of the sequel turns on the following simple computation. If you ever
wonder what all the fuss is about adjoints, Hermitian matrices, square roots, and
singular values, return to this brief computation, as it holds the key. There is much
more to do in this proof, but after this it is mostly bookkeeping. Here we go. We
check that Ax functions as an eigenvector of AA∗ for the eigenvalue λ,

(AA∗)Ax = Aλx = λ (Ax)

That’s it. If x is an eigenvector of A∗A, for a nonzero eigenvalue, then Ax is an
eigenvector for AA∗ for the same nonzero eigenvalue. Let’s see what this buys us.

A∗A and AA∗ are Hermitian matrices (Definition HM), and hence are normal
(Definition 10). This provides the existence of orthonormal bases of eigenvectors for
each matrix by Theorem OBNM. Also, since each matrix is diagonalizable (Def-

inition DZM) by Theorem OD the algebraic and geometric multiplicities of each
eigenvalue (zero or not) are equal by Theorem DMFE.

Our first step is to establish that a nonzero eigenvalue λ has the same geo-
metric multiplicity for both A∗A and AA∗. Suppose {x1, x2, x3, . . . , xs} is an
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orthonormal basis of eigenvectors of A∗A for the eigenspace EA∗A (λ). Then for
1 ≤ i < j ≤ s,

〈Axi, Axj〉 = 〈xi, A∗Axj〉 = 〈xi, λxj〉 = λ 〈xi, xj〉 = λ(0)

So the set E = {Ax1, Ax2, Ax3, . . . , Axs} is an orthogonal set of nonzero
eigenvectors of AA∗ for the eigenvalue λ. By Theorem OSLI, the set E is linearly
independent and so the geometric multiplicity of λ as an eigenvalue of AA∗ is s or
greater. We have

αA∗A (λ) = γA∗A (λ) ≤ γAA∗ (λ) = αAA∗ (λ)

This inequality applies to any matrix for any of its nonzero eigenvalues. We now
apply it to the matrix A∗,

αAA∗ (λ) = α(A∗)∗A∗ (λ) ≤ αA∗(A∗)∗ (λ) = αA∗A (λ)

With the twin inequalities, we see that the four multiplicities of a common nonzero
eigenvalue of A∗A and AA∗ are all equal. This is enough to establish that p = q,
since we cannot have an eigenvalue of one of the matrix-adjoint products along
with a zero algebraic multiplicity for the other matrix-adjoint product. Then the
eigenvalues can be ordered such that λi = ρi for 1 ≤ i ≤ p.

For any matrix, the null space is identical to the eigenspace of the zero eigenvalue,
and thus the nullity of the matrix is equal to the geometric multiplicity of the zero
eigenvalue. As our matrix-adjoint products are diagonalizable, the nullity is equal
to the algebraic multiplicity of the zero eigenvalue. The algebraic multiplicities of
all the eigenvalues sum to the size of the matrix (Theorem NEM), as does the rank
and nullity (Theorem RPNC). So the rank of our matrix-adjoint products is equal
to the sum of the algebraic multiplicities of the nonzero eigenvalues. So the ranks
of A∗A and AA∗ are equal,

r (A∗A) =

p∑
i=1

αA∗A (λi) =

q∑
i=1

αAA∗ (ρi) = r (AA∗)

When A is rectangular, the square matrices A∗A and AA∗ have different sizes.
With equal algebraic and geometric multiplicities for their common nonzero eigen-
values, the difference in their sizes is manifest in different algebraic multiplicities
for the zero eigenvalue and different nullities. Specifically,

n (A∗A) = n− r n (AA∗) = m− r

Suppose that x1, x2, x3, . . . , xn is an orthonormal basis of Cn composed of
eigenvectors of A∗A and ordered so that xi, r + 1 ≤ i ≤ n are eigenvectors of A∗A
for the zero eigenvalue. Denote the associated nonzero eigenvalues of A∗A for these
eigenvectors by δi, 1 ≤ i ≤ r. Then define

yi =
1√
δi
Axi, 1 ≤ i ≤ r

Let yr+1, yr+2, yr+2, . . . , ym be an orthonormal basis for the eigenspace EAA∗ (0),
whose existence is guaranteed by the Gram-Schmidt process (Theorem GSP). As
scalar multiples of demonstrated eigenvectors of AA∗, yi, 1 ≤ i ≤ r are also eigen-
vectors of AA∗, and yi, r + 1 ≤ i ≤ n have been chosen as eigenvectors of AA∗.
These eigenvectors also have norm 1, as we now show.
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For 1 ≤ i ≤ r,

‖yi‖2 =

∥∥∥∥ 1√
δi
Axi

∥∥∥∥2 =

〈
1√
δi
Axi,

1√
δi
Axi

〉
=

1√
δi

1√
δi
〈Axi, Axi〉 =

1

δi
〈Axi, Axi〉

=
1

δi
〈xi, A∗Axi〉 =

1

δi
〈xi, δixi〉

=
1

δi
δi 〈xi, xi〉 = 1

For r + 1 ≤ i ≤ n, the yi have been chosen to have norm 1.
Finally we check orthogonality. Consider two eigenvectors yi and yj with 1 ≤

i < j ≤ m. If these two vectors have different eigenvalues, then Theorem HMOE

establishes that the two eigenvectors are orthogonal. If the two eigenvectors have
a zero eigenvalue, then they are orthogonal by the choice of the orthonormal basis
of EAA∗ (0). If the two eigenvectors have identical eigenvalues, which are nonzero,
then

〈yi, yj〉 =

〈
1√
δi
Axi,

1√
δj
Axj

〉
=

1√
δi

1√
δj
〈Axi, Axj〉

=
1√
δiδj
〈Axi, Axj〉 =

1√
δiδj
〈xi, A∗Axj〉

=
1√
δiδj
〈xi, δjxj〉 =

δj√
δiδj
〈xi, xj〉

=
δj√
δiδj

(0) = 0

So {y1, y2, y3, . . . , ym} is an orthonormal set of eigenvectors for AA∗. The
critical relationship between these two orthonormal bases is present by design. For
1 ≤ i ≤ r,

Axi =
√
δi

1√
δi
Axi =

√
δiyi

For r + 1 ≤ i ≤ n we have

〈Axi, Axi〉 = 〈xi, A∗Axi〉 = 〈xi, 0〉 = 0

So by Theorem PIP, Axi = 0.

2.3.2 Singular Value Decomposition

The square roots of the eigenvalues of A∗A (or almost equivalently, AA∗!) are
known as the singular values of A. Here is the definition.

Definition 12. Suppose A is an m × n matrix. If the eigenvalues of A∗A are
δ1, δ2, δ3, . . . , δn, then the singular values of A are√

δ1,
√
δ2,
√
δ3, . . . ,

√
δn

Theorem 2.6 is a total setup for the singular value decomposition. This remark-
able theorem says that any matrix can be broken into a product of three matrices.
Two are square and unitary. In light of Theorem UMPIP, we can view these ma-
trices as transforming vectors or coordinates in a rotational fashion. The middle
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matrix of this decomposition is rectangular, but is as close to being diagonal as a
rectangular matrix can be. Viewed as a transformation, this matrix effects, reflec-
tions, contractions, or expansions along axes —it stretches vectors. So any matrix,
viewed as a geometric transformation is the product of a rotation, a stretch and a
rotation.

The singular value theorem can also be viewed as an application of our most
general statement about matrix representations of linear transformations relative
to different bases. Theorem MRCB concerns linear transformations T : U → V
where U and V are possibly different vector spaces. When U and V have different
dimensions, the resulting matrix representation will be rectangular. In Section CB

we quickly specialized to the case where U = V , and the matrix representations are
square, with one of our most central results, Theorem SCB. Theorem 2.7, next, is
an application of the full generality of Theorem MRCB where the relevant bases
are now orthonormal sets.

Theorem 2.7. Suppose A is an m×n matrix of rank r with nonzero singular values
s1, s2, s3, . . . , sr. Then A = USV ∗ where U is a unitary matrix of size m, V is a
unitary matrix of size n and S is an m× n matrix given by

[S]ij =

{
si if 1 ≤ i = j ≤ r
0 otherwise

Proof. Let x1, x2, x3, . . . , xn and y1, y2, y3, . . . , ym be the orthonormal bases
described by the conclusion of Theorem 2.6. Define U to be the m × m matrix
whose columns are yi, 1 ≤ i ≤ m, and define V to be the n × n matrix whose
columns are xi, 1 ≤ i ≤ n. With orthonormal sets of columns, both U and V are
unitary matrices by Theorem CUMOS.

Then for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[AV ]ij = [Axj ]i =
[√

δjyj

]
i

= sj [yj ]i

= [U ]ij [S]jj =

m∑
k=1

[U ]ik [S]kj = [US]ij

So by Theorem ME, AV and US are equal matrices, AV = US. V is unitary,
so applying its inverse yields the decomposition A = USV ∗.

Typically, the singular values of a matrix are ordered from largest to smallest,
so this convention is used for the diagonal elements of the matrix S in the decom-
position, and then the columns of U and V will be ordered similarly.

2.3.3 Visualizing the SVD

It is helpful to think of the orthonormal bases that are the columns of U and V
as “coordinate systems,” since they are pairwise “perpendicular” unit vectors, like
the ~i, ~j, ~k often used in describing the geometry of space. We would then call each
basis vector an “axis”.

Now think of an m × n matrix as a function from Cn to Cm. For an input
vector w ∈ Cn, we have the output vector y = Aw ∈ Cm. If we write the output
vector using the SVD decomposition of A as Aw = USV ∗w we can consider the
output as a three-step process that is more formally a composition of three linear
transformations. Recall that unitary matrices preserve inner products, and thus
preserve norms (length) and relative positions of two vectors (the “angle” between
vectors), which is why unitary matrices are sometimes called “isometries” (Theorem

UMPIP).
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1. V ∗ is the inverse of V so it will take any basis vector xi to a column of the
identity matrix ei, an element of the standard basis of Cn, or and axis of the
“usual” coordinate system. Any other vector, such as our w, will have its
length preserved, but changing its position, though its position relative to the
axes is unchanged.

2. S converts the “rotated” w from Cn to Cm. But it does so in a very simple
way. It simply scales each entry of the vector by a positive amount using a
different singular value for each entry. If m > n, then the extra entries are
simply new zeros. If m < n, then some entries get discarded.

3. U will convert the standard basis vectors (the usual axes) to the new orthonor-
mal basis given by the yi. The twice-transformed version of w will have its
length preserved, but change position, though its position relative to the axes
is unchanged.

So, every matrix is a rotation, a stretch, and a rotation. That is a simple, but
accurate, understanding of what the SVD tells us.

Here is another look at the same idea. Consider the columns of U and V again as
the axes of new coordinate systems. Then their adjoints are their inverses and each
take the new axes to the standard unit vectors (columns of the identity matrix), the
axes of the usual coordinate system. Consider an input vector w, and its output
y = Aw, relative to these new bases and convert each to the standard coordinate
system, w′ = V ∗w and y′ = U∗y. Then

y′ = U∗y = U∗Ay = U∗USV ∗y = Sy′

In the “primed” spaces, the action of A is very simple. Or in other words, every
linear transformation has a matrix representation that is basically diagonal, if only
we pick the right bases for the domain and codomain.

2.3.4 Properties of the SVD

The appeal of the singular value decomposition is two-fold. First it is applica-
ble to any matrix. That should be obvious enough. Second, components of the
SVD provide a wealth of information about a matrix, and in the case of numeri-
cal matrices, they are well-behaved. In this subsection we collect various theorems
about the SVD, and explore the consequences in a section about applications, Sec-
tion 〈〈section-applications-of-SVD〉〉.

The SVD gives a decomposition of a matrix of a sum of rank one matrices, and
the magnitude of the singular values tells us which of these rank one matrices is the
most “important”.

Theorem 2.8. Suppose the singular value decomposition of an m× n matrix A is
given by A = USV ∗, where the nonzero singular values in the first r entries of the
diagonal of S are s1, s2, s3, . . . , sr, and the columns of U and V are, respectively,
x1, x2, x3, . . . , xn and y1, y2, y3, . . . , ym. Then

A =

r∑
i=1

si xiy
∗
i

Proof. As usual, let ei be column i of the identity matrix Im. Define Si, for 1 ≤ i ≤ r
to be the m × n matrix where every entry is zero, except column i is siei. Then,
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by design, S =
∑r
i=1 Si. We have,

A = USV ∗ = U

r∑
i=1

Si V
∗ =

r∑
i=1

USiV
∗

=

r∑
i=1

U [0| . . . |siei| . . . |0]V ∗ =

r∑
i=1

si [0| . . . |Uei| . . . |0]V ∗

=

r∑
i=1

si [0| . . . |xi| . . . |0]V ∗ =

r∑
i=1

sixiy
∗
i

Be sure to recognize xiy
∗
i as the outer product, an m × n matrix of rank one

(every row is a multiple of every other row, and similarly for columns). See Subsec-
tion ?? for a good example of the utility of this result.

2.4 Cholesky Decomposition

An LU decomposition of a matrix is obtained by repeated row operations and
produces a result with some symmetry of sorts. The “L” matrix is lower triangular
and the “U” matrix is upper triangular, so [L]ij = 0 = [U ]ji for i < j, which should
be reminiscent of the definition of the adjoint of a matrix (Definition AM). If we
begin with a positive definite matrix, then we can do better. By beginning with a
Hermitian matrix, we can do row operations, and identical column operations and
maintain the symmetry of the entries. We arrive at a decomposition of the form
U∗U , where U is upper-triangular.

2.4.1 The Cholesky Decomposition

Recall that a Hermitian matrix A is positive definite if 〈x, Ax〉 > 0 for all x 6= 0.
This is just the variant of positive semi-definiteness (Definition 11) where we replace
the inequality by a strict inequality.

Theorem 2.9. Suppose that A is a positive definite matrix. Then there exists a
unique upper triangular matrix, U , with positive diagonal matrices such that A =
U∗U .

Proof. Coming soon. Algorithm below contains the essential ideas. Uniqueness is
an exercise.

Exercise 19. Prove that the upper triangular matrix U in the conclusion of The-
orem 2.9 is unique.

2.4.2 Computing a Cholesky Decomposition

To create an LU decomposition, we used row operations to “zero out” entries below
the diagonal of a matrix A. If we represented these row operations as elementary
matrices, we could accumulate their net effect in a lower triangular matrix that
operates on the left of the matrix. For a Cholesky decomposition, we do the same
thing, but also perform the analogous column operation, which can be represented
as the adjoint of the same elementary matrix, and then applied from the right.
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Here is the same idea, but expressed as intermediate steps leading to the even-
tual Cholesky decomposition. Recall that Hermitian matrices necessarily have real
diagonal entries. Suppose that A is an n× n positive definite matrix.

A =

[
a y∗

y B

]
=

[ √
a 0∗

1√
a
y I

] [
1 0∗

0 B − 1
ayy∗

] [ √
a 1√

a
y∗

0 I

]
= U∗1A1U1

The only obstacle to this computation is the square root of the entry in the top
left corner of A, and the result should be positive. If we apply the positive definite
condition, with x = e1 (the first column of the identity matrix) then we have

a = 〈e1, Ae1〉 > 0

.
Can we repeat this decomposition on the (n−1)× (n−1) matrix B− 1

ayy∗? As
before we just need a strictly positive entry in the upper left corner of this slightly
smaller matrix. Similar to before, employ the positive definite condition for A using
x = U−11 e2 and employ the version of A defining A1 (see Exercise 20). What is the
result after n iterations?

A = U∗n . . . U
∗
2U
∗
1 IU1U2 . . . Un = U∗U

Here we have used the observation that a product of upper triangular matrices
is again upper triangular, and you should notice the appearance of the positive
diagonal entries. So we have our desired factorization.

Exercise 20. In the discussion of a recursive algorithm for computing a Cholesky
decomposition in Section 2.4.2, verify that the matrix A1 has a strictly positive
value in the second diagonal entry.



Chapter 3

Canonical Forms

You will know that some matrices are diagonalizable and some are not. Some
authors refer to a non-diagonalizable matrix as defective, but we will study them
carefully anyway. Examples of such matrices include Example EMMS4, Example

HMEM5, and Example CEMS6. Each of these matrices has at least one eigenvalue
with geometric multiplicity strictly less than its algebraic multiplicity, and therefore
Theorem DMFE tells us these matrices are not diagonalizable.

Given a square matrix A, it is likely similar to many, many other matrices. Of
all these possibilities, which is the best? “Best” is a subjective term, but we might
agree that a diagonal matrix is certainly a very nice choice. Unfortunately, as we
have seen, this will not always be possible. What form of a matrix is “next-best”?
Our goal, which will take us several sections to reach, is to show that every matrix
is similar to a matrix that is “nearly-diagonal” (Section 3.3). More precisely, every
matrix is similar to a matrix with elements on the diagonal, and zeros and ones
on the diagonal just above the main diagonal (the “super diagonal”), with zeros
everywhere else. In the language of equivalence relations (see Theorem SER), we
are determining a systematic representative for each equivalence class, where the
relation is similarity. Such a representative for a set of similar matrices is called a
canonical form.

We have just discussed the determination of a canonical form as a question about
matrices. However, we know that every square matrix creates a natural linear
transformation (Theorem MBLT) and every linear transformation with identical
domain and codomain has a square matrix representation for each choice of a basis,
with a change of basis creating a similarity transformation (Theorem SCB). So
we will state, and prove, theorems using the language of linear transformations on
abstract vector spaces, while most of our examples will work with square matrices.
You can, and should, mentally translate between the two settings frequently and
easily.

3.1 Generalized Eigenspaces

In this section we will define a new type of invariant subspace and explore its key
properties. This generalization of eigenvalues and eigenspaces will allow us to move
from diagonal matrix representations of diagonalizable matrices to nearly diagonal
matrix representations of arbitrary matrices.

49
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3.1.1 Kernels of Powers of Linear Transformations

With Section 〈〈section-jodan-canonical-form〉〉 as our goal, we will become increas-
ingly interested in kernels of powers of linear transformations, which will go a
long way to helping us understand the structure of a linear transformation, or
its matrix representation. We need the next theorem to help us understand gener-
alized eigenspaces, though its specialization in Theorem 〈〈theorem-about-powers-
nilpotent〉〉 to nilpotent linear transformations will be the real workhorse.

Theorem 3.1. Suppose T : V → V is a linear transformation, where dim (V ) = n.
Then there is an integer m, 0 ≤ m ≤ n, such that

{0} = K
(
T 0
)
( K

(
T 1
)
( K

(
T 2
)
( · · · ( K(Tm) = K

(
Tm+1

)
= K

(
Tm+2

)
= · · ·

Proof. There are several items to verify in the conclusion as stated. First, we show
that K

(
T k
)
⊆ K

(
T k+1

)
for any k. Choose z ∈ K

(
T k
)
. Then

T k+1 (z) = T
(
T k (z)

)
= T (0) = 0

so z ∈ K
(
T k+1

)
Second, we demonstrate the existence of a power m where consecutive powers

result in equal kernels. A by-product will be the condition that m can be chosen so
that m ≤ n. To the contrary, suppose that

{0} = K
(
T 0
)
( K

(
T 1
)
( K

(
T 2
)
( · · · ( K

(
Tn−1

)
( K(Tn) ( K

(
Tn+1

)
( · · ·

SinceK
(
T k
)
( K

(
T k+1

)
, Theorem PSSD implies that dim

(
K
(
T k+1

))
≥ dim

(
K
(
T k
))

+
1. Repeated application of this observation yields

dim
(
K
(
Tn+1

))
≥ dim (K(Tn)) + 1

≥ dim
(
K
(
Tn−1

))
+ 2

≥ dim
(
K
(
Tn−2

))
+ 3

...

≥ dim
(
K
(
T 0
))

+ (n+ 1)

= n+ 1

As K
(
Tn+1

)
is a subspace of V , of dimension n, this is a contradiction.

The contradiction yields the existence of an integer k such that K
(
T k
)

=

K
(
T k+1

)
, so we can define m to be smallest such integer with this property. From

the argument above about dimensions resulting from a strictly increasing chain of
subspaces, we conclude that m ≤ n.

It remains to show that once two consecutive kernels are equal, then all of the
remaining kernels are equal. More formally, if K(Tm) = K

(
Tm+1

)
, then K(Tm) =

K
(
Tm+j

)
for all j ≥ 1. The proof is by induction on j. The base case (j = 1) is

precisely our defining property for m.
For the induction step, our hypothesis is that K(Tm) = K

(
Tm+j

)
. We want to

establish that K(Tm) = K
(
Tm+j+1

)
. At the outset of this proof we showed that

K(Tm) ⊆ K
(
Tm+j+1

)
. So we need only show the subset inclusion in the opposite

direction. To wit, choose z ∈ K
(
Tm+j+1

)
. Then

Tm+j (T (z)) = Tm+j+1 (z) = 0
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so T (z) ∈ K
(
Tm+j

)
= K(Tm). Thus

Tm+1 (z) = Tm (T (z)) = 0

so z ∈ K
(
Tm+1

)
= K(Tm), as desired.

Example 14. As an illustration of Theorem 3.1 consider the linear transformation
T : C10 → C10 defined by T (x) = Ax.

A =



−27 17 −12 −1 24 16 26 −2 −1 −3
−66 45 −55 11 73 44 45 −6 15 1
−85 58 −65 13 94 56 61 −6 16 −4
−81 58 −55 4 83 52 70 −7 6 −6
−33 21 −22 6 37 21 23 −1 6 −4
−38 28 −25 1 39 25 34 −3 1 −4
20 −15 23 −8 −28 −15 −8 1 −9 0
41 −30 39 −12 −53 −29 −23 2 −13 3
58 −43 43 −6 −64 −38 −47 4 −6 6
−69 46 −47 7 72 44 54 −5 9 −4



� �
A = matrix(QQ , [

[-27, 17, -12, -1, 24, 16, 26, -2, -1, -3],

[-66, 45, -55, 11, 73, 44, 45, -6, 15, 1],

[-85, 58, -65, 13, 94, 56, 61, -6, 16, -4],

[-81, 58, -55, 4, 83, 52, 70, -7, 6, -6],

[-33, 21, -22, 6, 37, 21, 23, -1, 6, -4],

[-38, 28, -25, 1, 39, 25, 34, -3, 1, -4],

[20, -15, 23, -8, -28, -15, -8, 1, -9, 0],

[41, -30, 39, -12, -53, -29, -23, 2, -13, 3],

[58, -43, 43, -6, -64, -38, -47, 4, -6, 6],

[-69, 46, -47, 7, 72, 44, 54, -5, 9, -4]

])� �
This linear transformation is engineered to illustrate the full generality of the

theorem. The kernels of the powers (null spaces of the matrix powers) increase, with
the nullity incrementing first by twos, then by ones, until we top out to find the
maximum nullity of 8 at the m = 6 power, well less than the maximum of n = 10.

dim
(
K
(
T 0
))

= 0 dim
(
K
(
T 1
))

= 2 dim
(
K
(
T 2
))

= 4

dim
(
K
(
T 3
))

= 5 dim
(
K
(
T 4
))

= 6 dim
(
K
(
T 5
))

= 7

dim
(
K
(
T 6
))

= 8 dim
(
K
(
T 7
))

= 8

It is somewhat interesting to row-reduce the powers of A, since the null spaces of
these powers are the kernels of the powers of T . These are best done with software,
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but here are two examples, first a mid-range power, then an extreme power.

A4 RREF−−−−→



1 0 0 0 −1 −3 3 −3 0 0
0 1 0 0 0 −4 7 −5 0 −1
0 0 1 0 0 −1 2 −1 0 −1
0 0 0 1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



A50 RREF−−−−→



1 0 −3 2
3 − 1

3 − 2
3 − 7

3 − 2
3

2
3

7
3

0 1 −5 1 1 0 −2 −1 1 3
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


Once we get to the sixth power, the kernels do not change, and so because of the
uniqueness of reduced row-echelon form, these do not change either.

3.1.2 Generalized Eigenspaces

These are the two main definitions of this section.

Definition 13. Suppose that T : V → V is a linear transformation. Suppose further
that for x 6= 0, (T − λIV )

k
(x) = 0 for some k > 0. Then x is a generalized

eigenvector of T with eigenvalue λ.

Definition 14. Suppose that T : V → V is a linear transformation. Define the
generalized eigenspace of T for λ as

GT (λ) =
{

x
∣∣∣ (T − λIV )

k
(x) = 0 for some k ≥ 0

}
So the generalized eigenspace is composed of generalized eigenvectors, plus the

zero vector. As the name implies, the generalized eigenspace is a subspace of V .
But more topically, it is an invariant subspace of V relative to T .

Theorem 3.2. Suppose that T : V → V is a linear transformation. Then the
generalized eigenspace GT (λ) is an invariant subspace of V relative to T .

Proof. First we establish that GT (λ) is a subspace of V . Note that (T − λIV )
0

(0) =
0, so by Theorem LTTZZ we have 0 ∈ GT (λ).

Suppose that x, y ∈ GT (λ). Then there are integers k, ` such that (T − λIV )
k

(x) =
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0 and (T − λIV )
`
(y) = 0. Set m = k + `,

(T − λIV )
m

(x + y) = (T − λIV )
m

(x) + (T − λIV )
m

(y)

= (T − λIV )
k+`

(x) + (T − λIV )
k+`

(y)

= (T − λIV )
`
(

(T − λIV )
k

(x)
)

+

(T − λIV )
k
(

(T − λIV )
`
(y)
)

= (T − λIV )
`
(0) + (T − λIV )

k
(0)

= 0 + 0 = 0

So x + y ∈ GT (λ).
Suppose that x ∈ GT (λ) and α ∈ C. Then there is an integer k such that

(T − λIV )
k

(x) = 0.

(T − λIV )
k

(αx) = α (T − λIV )
k

(x) = α0 = 0

. So αx ∈ GT (λ). By Theorem TSS, GT (λ) is a subspace of V .
Now we show that GT (λ) is invariant relative to T . Suppose that x ∈ GT (λ).

Then by Definition 14 there is an integer k such that (T − λIV )
k

(x) = 0. The
following argument is due to Zoltan Toth.

(T − λIV )
k

(T (x)) = (T − λIV )
k

(T (x))− λ0

= (T − λIV )
k

(T (x))− λ (T − λIV )
k

(x)

= (T − λIV )
k

(T (x))− (T − λIV )
k

(λx)

= (T − λIV )
k

(T (x)− λx)

= (T − λIV )
k

((T − λIV ) (x))

= (T − λIV )
k+1

(x)

= (T − λIV )
(

(T − λIV )
k

(x)
)

= (T − λIV ) (0) = 0

This qualifies T (x) for membership in GT (λ), so by Definition 14, GT (λ) is invariant
relative to T .

Before we compute some generalized eigenspaces, we state and prove one theo-
rem that will make it much easier to create a generalized eigenspace, since it will
allow us to use tools we already know well, and will remove some of the ambiguity
of the clause “for some k” in the definition.

Theorem 3.3. Suppose that T : V → V is a linear transformation, dim (V ) = n,
and λ is an eigenvalue of T . Then GT (λ) = K((T − λIV )

n
).

Proof. To establish the set equality, first suppose that x ∈ GT (λ). Then there is an

integer k such that (T − λIV )
k

(x) = 0. This is equivalent to the statement that

x ∈ K
(

(T − λIV )
k
)

. No matter what the value of k is, 〈〈theorem about nested

powers of kernels〉〉 gives

x ∈ K
(

(T − λIV )
k
)
⊆ K((T − λIV )

n
) .

So, GT (λ) ⊆ K((T − λIV )
n
).
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For the opposite inclusion, suppose y ∈ K((T − λIV )
n
). Then (T − λIV )

n
(y) =

0, so y ∈ GT (λ) and thus K((T − λIV )
n
) ⊆ GT (λ). So we have the desired equality

of sets.

Theorem 3.3 allows us to compute generalized eigenspaces as a single kernel (or
null space of a matrix representation) without considering all possible powers k.
We can simply consider the case where k = n. It is worth noting that the “regular”
eigenspace is a subspace of the generalized eigenspace since

ET (λ) = K
(

(T − λIV )
1
)
⊆ K((T − λIV )

n
) = GT (λ)

where the subset inclusion is a consequence of Theorem 3.1.

Also, there is no such thing as a “generalized eigenvalue.” If λ is not an eigen-
value of T , then the kernel of T − λIV is trivial and therefore subsequent powers
of T − λIV also have trivial kernels (Theorem 3.1 gives m = 0). So if we defined
generalized eigenspaces for scalars that are not an eigenvalue, they would always
be trivial. Alright, we know enough now to compute some generalized eigenspaces.
We will record some information about algebraic and geometric multiplicities of
eigenvalues (Definition AME, Definition GME) as we go, since these observations
will be of interest in light of some future theorems.

Example 15. In order to gain some experience with generalized eigenspaces, we
construct one and then also construct a matrix representation for the restriction to
this invariant subspace.

Consider the linear transformation T : C5 → C5 defined by T (x) = Ax, where

A =


−22 −24 −24 −24 −46

3 2 6 0 11
−12 −16 −6 −14 −17

6 8 4 10 8
11 14 8 13 18


One of the eigenvalues of A is λ = 2, with geometric multiplicity γT (2) = 1,

and algebraic multiplicity αT (2) = 3. We get the generalized eigenspace according
to Theorem 3.3,

W = GT (2) = K
(

(T − 2IC5)
5
)

=

〈


−2
1
1
0
0

 ,


0
−1
0
1
0

 ,

−4
2
0
0
1



〉

= 〈{w1, w2, w3}〉

By Theorem 3.2, we know W is invariant relative to T , so we can employ Definition

LTR to form the restriction, T |W : W →W .

We will from the restriction of T to W , T |W , since we will do this frequently
in subsequent examples. For a basis of W we will use C = {w1, w2, w3}. Notice
that dim (W ) = 3, so our matrix representation will be a square matrix of size 3.
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Applying Definition MR, we compute

ρC (T (w1)) = ρC (Aw1)

= ρC



−4
2
2
0
0


 = ρC

2


−2
1
1
0
0

+ 0


0
−1
0
1
0

+ 0


−4
2
0
0
1


 =

2
0
0


ρC (T (w2)) = ρC (Aw2)

= ρC




0
−2
2
2
−1


 = ρC

2


−2
1
1
0
0

+ 2


0
−1
0
1
0

+ (−1)


−4
2
0
0
1


 =

 2
2
−1


ρC (T (w3)) = ρC (Aw3)

= ρC



−6
3
−1
0
2


 = ρC

(−1)


−2
1
1
0
0

+ 0


0
−1
0
1
0

+ 2


−4
2
0
0
1


 =

−1
0
2



So the matrix representation of T |W relative to C is

M
T |W
C,C =

2 2 −1
0 2 0
0 −1 2


The question arises: how do we use a 3×3 matrix to compute with vectors from

C5? To answer this question, consider the randomly chosen vector

w =


−4
4
4
−2
−1


First check that w ∈ GT (2). There are two ways to do this, first verify that

(T − 2IC5)
5

(w) = (A− 2I5)
5
w = 0

meeting Definition 13 (with k = 5). Or, express w as a linear combination of the
basis C for W , to wit, w = 4w1 − 2w2 −w3.

Now compute T |W (w) directly

T |W (w) = T (w) = Aw =


−10

9
5
−4
0


It was necessary to verify that w ∈ GT (2). If we trust our work so far, then this
output we just computed will also be an element of W , but it would be wise to
check this anyway (using either of the methods we used for w). We’ll wait.
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Now we will repeat this sample computation, but instead using the matrix rep-
resentation of T |W relative to C.

T |W (w) = ρ−1C

(
M

T |W
C,C ρC (w)

)
= ρ−1C

(
M

T |W
C,C ρC (4w1 − 2w2 −w3)

)
= ρ−1C

2 2 −1
0 2 0
0 −1 2

 4
−2
−1

 = ρ−1C

 5
−4
0



= 5


−2
1
1
0
0

+ (−4)


0
−1
0
1
0

+ 0


−4
2
0
0
1

 =


−10

9
5
−4
0



This matches the previous computation. Notice how the “action” of T |W is accom-
plished by a 3× 3 matrix multiplying a column vector of size 3.

If you would like more practice with these sorts of computations, mimic the
above using the other eigenvalue of T , which is λ = −2. The generalized eigenspace
has dimension 2, so the matrix representation of the restriction to the generalized
eigenspace will be a 2× 2 matrix.

Our next two examples compute a complete set of generalized eigenspaces for a
linear transformation.

Example 16. In Example 3 we presented two invariant subspaces of C4. There
was some mystery about just how these were constructed, but we can now reveal
that they are generalized eigenspaces. Example 3 featured T : C4 → C4 defined by
T (x) = Ax with A given by

A =


−8 6 −15 9
−8 14 −10 18
1 1 3 0
3 −8 2 −11



A matrix representation of T relative to the standard basis (Definition SUV) will
equal A. So we can analyze A with the techniques of Chapter E. Doing so, we find
two eigenvalues, λ = 1, −2, with multiplicities,

αT (1) = 2 γT (1) = 1 αT (−2) = 2 γT (−2) = 1

To apply Theorem 3.3 we subtract each eigenvalue from the diagonal entries of A,
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raise the result to the power dim
(
C4
)

= 4, and compute a basis for the null space.

(A− (−2)I4)
4

=


648 −1215 729 −1215
−324 486 −486 486
−405 729 −486 729
297 −486 405 −486

 RREF−−−−→


1 0 3 0
0 1 1 1
0 0 0 0
0 0 0 0



GT (−2) =

〈

−3
−1
1
0

 ,


0
−1
0
1



〉

(A− (1)I4)
4

=


81 −405 −81 −729
−108 −189 −378 −486
−27 135 27 243
135 54 351 243

 RREF−−−−→


1 0 7/3 1
0 1 2/3 2
0 0 0 0
0 0 0 0



GT (1) =

〈

−7
−2
3
0

 ,

−1
−2
0
1



〉

In Example 3 we concluded that these two invariant subspaces formed a direct sum
of C4, only at that time, they were called X and W . Now we can write

C4 = GT (1)⊕ GT (−2)

This is no accident. Notice that the dimension of each of these invariant subspaces
is equal to the algebraic multiplicity of the associated eigenvalue. Not an accident
either. (See the upcoming Theorem 3.4.)

Example 17. Define the linear transformation S : C6 → C6 by S (x) = Bx where


2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7


Then B will be the matrix representation of S relative to the standard basis and we
can use the techniques of Chapter E applied to B in order to find the eigenvalues
of S.

αS (3) = 2 γS (3) = 1 αS (−1) = 4 γS (−1) = 2

To find the generalized eigenspaces of S we need to subtract an eigenvalue from the
diagonal elements of B, raise the result to the power dim

(
C6
)

= 6 and compute
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the null space. Here are the results for the two eigenvalues of S,

(B − 3I6)
6

=


64000 −152576 −59904 26112 −95744 133632
15872 −39936 −11776 8704 −29184 36352
12032 −30208 −9984 6400 −20736 26368
−1536 11264 −23040 17920 −17920 −1536
−9728 27648 −6656 9728 −1536 −17920
−7936 17920 5888 1792 4352 −14080



RREF−−−−→


1 0 0 0 −4 5
0 1 0 0 −1 1
0 0 1 0 −1 1
0 0 0 1 −2 1
0 0 0 0 0 0
0 0 0 0 0 0



GS (3) =

〈



4
1
1
2
1
0

 ,

−5
−1
−1
−1
0
1




〉

(B − (−1)I6)
6

=


6144 −16384 18432 −36864 57344 −18432
4096 −8192 4096 −16384 24576 −4096
4096 −8192 4096 −16384 24576 −4096
18432 −32768 6144 −61440 90112 −6144
14336 −24576 2048 −45056 65536 −2048
10240 −16384 −2048 −28672 40960 2048



RREF−−−−→


1 0 −5 2 −4 5
0 1 −3 3 −5 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



GS (−1) =

〈



5
3
1
0
0
0

 ,

−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,

−5
−3
0
0
0
1




〉

If we take the union of the two bases for these two invariant subspaces we obtain
the set

C =




4
1
1
2
1
0

 ,

−5
−1
−1
−1
0
1

 ,


5
3
1
0
0
0

 ,

−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,

−5
−3
0
0
0
1




You can check that this set is linearly independent (right now we have no guarantee
this will happen). Once this is verified, we have a basis for C6. This is enough for
us to apply Theorem 1.1 and conclude that

C6 = GS (3)⊕ GS (−1)
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This is no accident. Notice that the dimension of each of these invariant subspaces
is equal to the algebraic multiplicity of the associated eigenvalue. Not an accident
either. (See Theorem 3.4.)

Our principal interest in generalized eigenspaces is the following important the-
orem, which has been presaged by the two previous examples.

Theorem 3.4. Suppose that T : V → V is a linear transformation with distinct
eigenvalues λ1, λ2, λ3, . . . , λm. Then

V = GT (λ1)⊕ GT (λ2)⊕ GT (λ3)⊕ · · · ⊕ GT (λm)

Proof. We will provide a complete proof soon. For now, we give an outline.
We now that a decomposition of the domain of a linear transformation into

invariant subspaces will give a block diagonal matrix representation. But it cuts
both ways. If there is a similarity transformation to a block diagonal matrix, then
the columns of the nonsingular matrix used for similarity will be a basis that can be
partitioned into bases of invariant subspaces that are a direct sum decomposition of
the domain (Theorem SCB). So we outline a sequence of similarity transformations
that converts any square matrix to the appropriate block diagonal form.

1. Begin with the eigenvalues of the matrix, ordered so that equal eigenvalues
are adjacent.

2. Determine the upper triangular matrix with these eigenvalues on the diagonal
and similar to the original matrix as guaranteed by Theorem UTMR.

3. Suppose that the entry in row i and column j in the “upper half” (so j > i)
has the value a. Suppose further that the diagonal entries (eigenvalues) λi
and λj are different.

Define S to be the identity matrix, with the addition of the entry a
λj−λi in

row i and column j. Then a similarity transformation by S will place a zero
in row i and column j. Here is where we begin to understand being careful
about equal and different eigenvalues.

4. The similarity transformation of the previous step will change other entries of
the matrix, but only in row i to the right of the entry of interest and column
j above the entry of interest.

5. Begin in the bottom row, going only as far right as needed to get different
eigenvalues, and “zero out” the rest of the row. Move up a row, work left to
right, “zeroing out” as much of the row as possible. Continue moving up a
row at a time, then move left to right in the row. The restriction to using
different eigenvalues will cut a staircase pattern.

6. You should understand that the blocks left on the diagonal correspond to runs
of equal eigenvalues on the diagonal. So each block has a size equal to the
algebraic multiplicity of the eigenvalue.

Now, given any linear transformation, we can find a decomposition of the domain
into a collection of invariant subspaces. And, as we have seen, such a decomposition
will provide a basis for the domain so that a matrix representation realtive to
this basis will have a block diagonal form. Besides a decomposition into invariant
subspaces, this proof has a bonus for us.
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Corollary 3.5. Suppose T : V → V is a linear transformation with eigenvalue λ.
Then the dimension of the generalized eigenspace for λ is the algebraic multiplicity
of λ, dim (GT (λ)) = αT (λ).

Proof. Coming soon: as a consequence of proof, or by counting dimensions with
inequality on geometric dimension.

We illustrate the use of this decomposition in building a block diagonal matrix
representation.

Example 18. In Example 17 we computed the generalized eigenspaces of the linear
transformation S : C6 → C6 by S (x) = Bx where

B =


2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7



We also recognized that these generalized eigenspaces provided a vector space de-
composition.

From these generalized eigenspaces, we found the basis

C = {v1, v2, v3, v4, v5, v6}

=




4
1
1
2
1
0

 ,

−5
−1
−1
−1
0
1

 ,


5
3
1
0
0
0

 ,

−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,

−5
−3
0
0
0
1





of C6 where {v1, v2} is a basis of GS (3) and {v3, v4, v5, v6} is a basis of GS (−1)

We can employ C in the construction of a matrix representation of S (Definition
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MR). Here are the computations,

ρC (S (v1))

= ρC




11
3
3
7
4
1



 = ρC (4v1 + 1v2) =


4
1
0
0
0
0



ρC (S (v2)) = ρC




−14
−3
−3
−4
−1
2



 = ρC ((−1)v1 + 2v2) =


−1
2
0
0
0
0



ρC (S (v3)) = ρC




23
5
5
2
−2
−2



 = ρC (5v3 + 2v4 + (−2)v5 + (−2)v6) =


0
0
5
2
−2
−2



ρC (S (v4)) = ρC




−46
−11
−10
−2
5
4



 = ρC ((−10)v3 + (−2)v4 + 5v5 + 4v6) =


0
0
−10
−2
5
4



ρC (S (v5)) = ρC




78
19
17
1
−10
−7



 = ρC (17v3 + 1v4 + (−10)v5 + (−7)v6) =


0
0
17
1
−10
−7



ρC (S (v6)) = ρC




−35
−9
−8
2
6
3



 = ρC ((−8)v3 + 2v4 + 6v5 + 3v6) =


0
0
−8
2
6
3


These column vectors are the columns of the matrix representation, so we obtain

MS
C,C =


4 −1 0 0 0 0
1 2 0 0 0 0
0 0 5 −10 17 −8
0 0 2 −2 1 2
0 0 −2 5 −10 6
0 0 −2 4 −7 3


As before, the key feature of this representation is the 2× 2 and 4× 4 blocks on

the diagonal. They arise from generalized eigenspaces and their sizes are equal to
the algebraic multiplicities of the eigenvalues.
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3.2 Nilpotent Linear Transformations

We will discover that nilpotent linear transformations are the essential obstacle in a
non-diagonalizable linear transformation. So we will study them carefully, both as
an object of inherent mathematical interest, but also as the object at the heart of
the argument that leads to a pleasing canonical form for any linear transformation.
Once we understand these linear transformations thoroughly, we will be able to
easily analyze the structure of any linear transformation.

3.2.1 Nilpotent Linear Transformations

Definition 15. Suppose that T : V → V is a linear transformation such that there
is an integer p > 0 such that T p (v) = 0 for every v ∈ V . The smallest p for which
this condition is met is called the index of T .

Of course, the linear transformation T defined by T (v) = 0 will qualify as
nilpotent of index 1. But are there others? Yes, of course.

Example 19. Recall that our definitions and theorems are being stated for linear
transformations on abstract vector spaces, while our examples will work with square
matrices (and use the same terms interchangeably). In this case, to demonstrate
the existence of nontrivial nilpotent linear transformations, we desire a matrix such
that some power of the matrix is the zero matrix. Consider powers of a 6×6 matrix
A,

A =


−3 3 −2 5 0 −5
−3 5 −3 4 3 −9
−3 4 −2 6 −4 −3
−3 3 −2 5 0 −5
−3 3 −2 4 2 −6
−2 3 −2 2 4 −7


and compute powers of A,

A2 =


1 −2 1 0 −3 4
0 −2 1 1 −3 4
3 0 0 −3 0 0
1 −2 1 0 −3 4
0 −2 1 1 −3 4
−1 −2 1 2 −3 4



A3 =


1 0 0 −1 0 0
1 0 0 −1 0 0
0 0 0 0 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0



A4 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Thus we can say that A is nilpotent of index 4.
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Because it will presage some upcoming theorems, we will record some extra
information about the eigenvalues and eigenvectors of A here. A has just one
eigenvalue, λ = 0, with algebraic multiplicity 6 and geometric multiplicity 2. The
eigenspace for this eigenvalue is

EA (0) =

〈


2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1


〉

If there were degrees of singularity, we might say this matrix was very singular,
since zero is an eigenvalue with maximum algebraic multiplicity (Theorem SMZE,
Theorem ME). Notice too that A is “far” from being diagonalizable (Theorem

DMFE).

With the existence of nontrivial nilpotent matrivces settled, let’s look at another
example.

Example 20. Consider the matrix

B =


−1 1 −1 4 −3 −1
1 1 −1 2 −3 −1
−9 10 −5 9 5 −15
−1 1 −1 4 −3 −1
1 −1 0 2 −4 2
4 −3 1 −1 −5 5


and compute the second power of B,

B2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


So B is nilpotent of index 2.

Again, the only eigenvalue of B is zero, with algebraic multiplicity 6. The
geometric multiplicity of the eigenvalue is 3, as seen in the eigenspace,

EB (0) =

〈


1
3
6
1
0
0

 ,


0
−4
−7
0
1
0

 ,


0
2
1
0
0
1


〉

Again, Theorem DMFE tells us that B is far from being diagonalizable.

On a first encounter with the definition of a nilpotent matrix, you might wonder
if such a thing was possible at all. That a high power of a nonzero object could
be zero is so very different from our experience with scalars that it seems very
unnatural. Hopefully the two previous examples were somewhat surprising. But we
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have seen that matrix algebra does not always behave the way we expect (Example
MMNC), and we also now recognize matrix products not just as arithmetic, but as
function composition (Theorem MRCLT). With a couple examples completed, we
turn to some general properties.

Theorem 3.6. Suppose that T : V → V is a nilpotent linear transformation and λ
is an eigenvalue of T . Then λ = 0.

Proof. Let x be an eigenvector of T for the eigenvalue λ, and suppose that T is
nilpotent with index p. Then

0 = T p (x) = λpx

Because x is an eigenvector, it is nonzero, and therefore Theorem SMEZV tells us
that λp = 0 and so λ = 0.

Paraphrasing, all of the eigenvalues of a nilpotent linear transformation are zero.
So in particular, the characteristic polynomial of a nilpotent linear transformation,
T , on a vector space of dimension n, is simply pT (x) = xn.

The next theorem is not critical for what follows, but it will explain our interest
in nilpotent linear transformations. More specifically, it is the first step in backing
up the assertion that nilpotent linear transformations are the essential obstacle in a
non-diagonalizable linear transformation. While it is not obvious from the statement
of the theorem, it says that a nilpotent linear transformation is not diagonalizable,
unless it is trivially so.

Theorem 3.7. Suppose the linear transformation T : V → V is nilpotent. Then T
is diagonalizable if and only if T is the zero linear transformation.

Proof. (⇐) We start with the easy direction. Let n = dim (V ). The linear trans-
formation Z : V → V defined by Z (v) = 0 for all v ∈ V is nilpotent of index p = 1
and a matrix representation relative to any basis of V is the n× n zero matrix, O.
Quite obviously, the zero matrix is a diagonal matrix (Definition DIM) and hence
Z is diagonalizable (Definition DZM).

() Assume now that T is diagonalizable, so γT (λ) = αT (λ) for every eigenvalue
λ (Theorem DMFE). By Theorem 3.6, T has only one eigenvalue (zero), which
therefore must have algebraic multiplicity n (Theorem NEM). So the geometric
multiplicity of zero will be n as well, γT (0) = n.

Let B be a basis for the eigenspace ET (0). Then B is a linearly independent
subset of V of size n, and thus a basis of V . For any x ∈ B we have

T (x) = 0x = 0

So T is identically zero on a basis for B, and since the action of a linear transforma-
tion on a basis determines all of the values of the linear transformation (Theorem

LTDB), it is easy to see that T (v) = 0 for every v ∈ V .

So, other than one trivial case (the zero linear transformation), every nilpotent
linear transformation is not diagonalizable. It remains to see what is so “essential”
about this broad class of non-diagonalizable linear transformations.

3.2.2 Powers of Kernels of Nilpotent Linear Transformations

We return to our discussion of kernels of powers of linear transformations, now
specializing to nilpotent linear transformations. We reprise Theorem 3.1, gaining
just a little more precision in the conclusion.
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Theorem 3.8. Suppose T : V → V is a nilpotent linear transformation with index
p and dim (V ) = n. Then 0 ≤ p ≤ n and

{0} = K
(
T 0
)
( K

(
T 1
)
( K

(
T 2
)
( · · · ( K(T p) = K

(
T p+1

)
= · · · = V

Proof. Since T p = 0 it follows that T p+j = 0 for all j ≥ 0 and thus K
(
T p+j

)
= V

for j ≥ 0. So the value of m guaranteed by Theorem KPLT is at most p. The only
remaining aspect of our conclusion that does not follow from Theorem 3.1 is that
m = p. To see this, we must show that K

(
T k
)
( K

(
T k+1

)
for 0 ≤ k ≤ p − 1. If

K
(
T k
)

= K
(
T k+1

)
for some k < p, then K

(
T k
)

= K(T p) = V . This implies that
T k = 0, violating the fact that T has index p. So the smallest value of m is indeed
p, and we learn that p < n.

The structure of the kernels of powers of nilpotent linear transformations will be
crucial to what follows. But immediately we can see a practical benefit. Suppose we
are confronted with the question of whether or not an n×n matrix, A, is nilpotent
or not. If we don’t quickly find a low power that equals the zero matrix, when do
we stop trying higher and higher powers? Theorem 3.8 gives us the answer: if we
don’t see a zero matrix by the time we finish computing An, then it is not going to
ever happen. We will now take a look at one example of Theorem 3.8 in action.

Example 21. We will recycle the nilpotent matrix A of index 4 from Example 19.
We now know that would have only needed to look at the first 6 powers of A if
the matrix had not been nilpotent and we wanted to discover that. We list bases
for the null spaces of the powers of A. (Notice how we are using null spaces for
matrices interchangeably with kernels of linear transformations, see Theorem KNSI

for justification.)

N (A) = N




−3 3 −2 5 0 −5
−3 5 −3 4 3 −9
−3 4 −2 6 −4 −3
−3 3 −2 5 0 −5
−3 3 −2 4 2 −6
−2 3 −2 2 4 −7



 =

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1




〉

N
(
A2
)

= N




1 −2 1 0 −3 4
0 −2 1 1 −3 4
3 0 0 −3 0 0
1 −2 1 0 −3 4
0 −2 1 1 −3 4
−1 −2 1 2 −3 4



 =

〈



0
1
2
0
0
0

 ,


2
1
0
2
0
0

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1




〉

N
(
A3
)

= N




1 0 0 −1 0 0
1 0 0 −1 0 0
0 0 0 0 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0



 =

〈



0
1
0
0
0
0

 ,


0
0
1
0
0
0

 ,


1
0
0
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




〉

N
(
A4
)

= N




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



 =

〈



1
0
0
0
0
0

 ,


0
1
0
0
0
0

 ,


0
0
1
0
0
0

 ,


0
0
0
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




〉
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With the exception of some convenience scaling of the basis vectors in N
(
A2
)

these are exactly the basis vectors described in Theorem BNS. We can see that
the dimension of N (A) equals the geometric multiplicity of the zero eigenvalue.
Why is this not an accident? We can see the dimensions of the kernels consistently
increasing, and we can see that N

(
A4
)

= C6. But Theorem 3.8 says a little more.
Each successive kernel should be a superset of the previous one. We ought to be
able to begin with a basis of N (A) and extendem¿ it to a basis of N

(
A2
)
. Then we

should be able to extend a basis of N
(
A2
)

into a basis of N
(
A3
)
, all with repeated

applications of Theorem ELIS. Verify the following,

N (A) =

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1




〉

N
(
A2
)

=

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1




〉

N
(
A3
)

=

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1

 ,


0
0
0
0
0
1




〉

N
(
A4
)

=

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1

 ,


0
0
0
0
0
1

 ,


0
0
0
1
0
0




〉

Do not be concerned at the moment about how these bases were constructed
since we are not describing the applications of Theorem ELIS here. Do verify
carefully for each alleged basis that, (1) it is a superset of the basis for the previous
kernel, (2) the basis vectors really are members of the kernel of the associated power
of A, (3) the basis is a linearly independent set, (4) the size of the basis is equal to
the size of the basis found previously for each kernel. With these verifications, you
will know that we have successfully demonstrated what Theorem 3.8 guarantees.

3.2.3 Restrictions to Generalized Eigenspaces

We have seen that we can decompose the domain of a linear transformation into
a direct sum of generalized eigenspaces (Theorem 3.4). And we know that we can
then easily obtain a basis that leads to a block diagonal matrix representation. The
blocks of this matrix representation are matrix representations of restrictions to the
generalized eigenspaces (for example, Example 18). And the next theorem tells us
that these restrictions, adjusted slightly, provide us with a broad class of nilpotent
linear transformations.
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Theorem 3.9. Suppose T : V → V is a linear transformation with eigenvalue λ.
Then the linear transformation T |GT (λ) − λIGT (λ) is nilpotent.

Proof. Notice first that every subspace of V is invariant with respect to IV , so
IGT (λ) = IV |GT (λ). Let n = dim (V ) and choose v ∈ GT (λ). Then with an applica-
tion of Theorem 3.3,

(
T |GT (λ) − λIGT (λ)

)n
(v) = (T − λIV )

n
(v) = 0

So by Definition NLT, T |GT (λ) − λIGT (λ) is nilpotent.

The proof of Theorem 3.9 shows that the index of the linear transformation
T |GT (λ)−λIGT (λ)is less than or equal to the dimension of V . In practice, it must be
less than or equal to the dimension of the domain, GT (λ). In any event, the exact
value of this index will be of some interest, so we define it now. Notice that this
is a property of the eigenvalue λ. In many ways it is similar to the algebraic and
geometric multiplicities of an eigenvalue (Definition AME, Definition GME).

Definition 16. Suppose T : V → V is a linear transformation with eigenvalue λ.
Then the index of λ, ιT (λ), is the index of the nilpotent linear transformation
T |GT (λ) − λIGT (λ).

Example 22. In Example 17 we computed the generalized eigenspaces of the linear
transformation S : C6 → C6 defined by S (x) = Bx where

B =


2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7



The generalized eigenspace GS (3) has dimension 2, while GS (−1) has dimension
4. We will investigate each thoroughly in turn, with the intent being to illustrate
Theorem 3.9. Many of our computations will be repeats of those done in Exam-
ple 18.

For U = GS (3) we compute a matrix representation of S|U using the basis found
in Example 17,

D = {u1, u2} =




4
1
1
2
1
0

 ,

−5
−1
−1
−1
0
1
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Since D has size 2, we obtain a 2× 2 matrix representation from

ρD (S|U (u1)) = ρD




11
3
3
7
4
1



 = ρD (4u1 + u2) =

[
4
1

]

ρD (S|U (u2)) = ρD




−14
−3
−3
−4
−1
2



 = ρD ((−1)u1 + 2u2) =

[
−1
2

]

Thus

M = M
S|U
U,U =

[
4 −1
1 2

]

Now we can illustrate Theorem 3.9 with powers of the matrix representation
(rather than the restriction itself),

M − 3I2 =

[
1 −1
1 −1

]
(M − 3I2)

2
=

[
0 0
0 0

]

So M − 3I2 is a nilpotent matrix of index 2 (meaning that S|U − 3IU is a nilpotent
linear transformation of index 2) and according to Definition 16 we say ιS (3) = 2.

For W = GS (−1) we compute a matrix representation of S|W using the basis
found in Example 17,

E = {w1, w2, w3, w4} =




5
3
1
0
0
0

 ,

−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,

−5
−3
0
0
0
1





Since E has size 4, we obtain a 4 × 4 matrix representation (Definition MR)
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from

ρE (S|W (w1)) = ρE




23
5
5
2
−2
−2



 = ρE (5w1 + 2w2 + (−2)w3 + (−2)w4) =


5
2
−2
−2



ρE (S|W (w2)) = ρE




−46
−11
−10
−2
5
4



 = ρE ((−10)w1 + (−2)w2 + 5w3 + 4w4) =


−10
−2
5
4



ρE (S|W (w3)) = ρE




78
19
17
1
−10
−7



 = ρE (17w1 + w2 + (−10)w3 + (−7)w4) =


17
1
−10
−7



ρE (S|W (w4)) = ρE




−35
−9
−8
2
6
3



 = ρE ((−8)w1 + 2w2 + 6w3 + 3w4) =


−8
2
6
3


Thus

N = M
S|W
W,W =


5 −10 17 −8
2 −2 1 2
−2 5 −10 6
−2 4 −7 3


Now we can illustrate Theorem 3.9 with powers of the matrix representation

(rather than the restriction itself),

N − (−1)I4 =


6 −10 17 −8
2 −1 1 2
−2 5 −9 6
−2 4 −7 4



(N − (−1)I4)
2

=


−2 3 −5 2
4 −6 10 −4
4 −6 10 −4
2 −3 5 −2



(N − (−1)I4)
3

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


So N − (−1)I4 is a nilpotent matrix of index 3 (meaning that S|W − (−1)IW is a
nilpotent linear transformation of index 3) and according to Definition 16 we say
ιS (−1) = 3.

Notice that if we were to take the union of the two bases of the generalized
eigenspaces, we would have a basis for C6. Then a matrix representation of S relative



70 CHAPTER 3. CANONICAL FORMS

to this basis would be the same block diagonal matrix we found in Example 18, only
we now understand each of these blocks as being very close to being a nilpotent
matrix.

3.2.4 Jordan Blocks

We conclude this section about nilpotent linear transformations with an infinte fam-
ily of nilpotent matrices and a doubly-infinite family of nearly nilpotent matrices.

Definition 17. Given the scalar λ ∈ C, the Jordan block Jn (λ) is the n×n matrix
defined by

[Jn (λ)]ij =


λ i = j

1 j = i+ 1

0 otherwise

Example 23. A simple example of a Jordan block,

J4 (5) =


5 1 0 0
0 5 1 0
0 0 5 1
0 0 0 5



We will return to general Jordan blocks later, but in this section we are only
interested in Jordan blocks where λ = 0. (But notice that Jn (λ) − λIn = Jn (0).)
Here is an example of why we are specializing in the λ = 0 case now.

Example 24. Consider

J5 (0) =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
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and compute powers,

(J5 (0))
2


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



(J5 (0))
3

=


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(J5 (0))
4

=


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(J5 (0))
5

=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


So J5 (0) is nilpotent of index 5. As before, we record some information about

the eigenvalues and eigenvectors of this matrix. The only eigenvalue is zero, with
algebraic multiplicity 5, the maximum possible (Theorem ME). The geometric mul-
tiplicity of this eigenvalue is just 1, the minimum possible (Theorem ME), as seen
in the eigenspace,

EJ5(0) (0) =

〈
1
0
0
0
0


〉

There should not be any real surprises in this example. We can watch the ones in
the powers of J5 (0) slowly march off to the upper-right hand corner of the powers.
Or we can watch the columns of the identity matrix march right, falling off the edge
as they go. In some vague way, the eigenvalues and eigenvectors of this matrix are
equally extreme.

We can form combinations of Jordan blocks to build a variety of nilpotent ma-
trices. Simply create a block diagonal matrix, where each block is a Jordan block.

Example 25. Consider the matrix

C =

J3 (0) O O
O J3 (0) O
O O J2 (0)

 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
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and compute powers,

C2 =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



C3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


So C is nilpotent of index 3. You should notice how block diagonal matrices

behave in products (much like diagonal matrices) and that it was the largest Jordan
block that determined the index of this combination. All eight eigenvalues are zero,
and each of the three Jordan blocks contributes one eigenvector to a basis for the
eigenspace, resulting in zero having a geometric multiplicity of 3.

Since nilpotent matrices only have zero as an eigenvalue (Theorem 3.6), the
algebraic multiplicity will be the maximum possible. However, by creating block
diagonal matrices with Jordan blocks on the diagonal you should be able to attain
any desired geometric multiplicity for this lone eigenvalue. Likewise, the size of the
largest Jordan block employed will determine the index of the matrix. So nilpotent
matrices with various combinations of index, geometric multiplicity and algebraic
multiplicity are easy to manufacture. The predictable properties of block diagonal
matrices in matrix products and eigenvector computations, along with the next
theorem, make this possible. You might find Example NJB5 a useful companion to
this proof.

Theorem 3.10. The Jordan block Jn (0) is nilpotent of index n.

Proof. We need to establish a specific matrix is nilpotent of a specified index. The
first column of Jn (0) is the zero vector, and the remaining n − 1 columns are the
standard unit vectors ei, 1 ≤ i ≤ n − 1 (Definition SUV), which are also the first
n− 1 columns of the size n identity matrix In. As shorthand, write J = Jn (0).

J = [0 |e1 |e2 |e3 |. . . |en−1 ]

We will use the definition of matrix multiplication (Definition MM), together with
a proof by induction, to study the powers of J . Our claim is that

Jk = [0 |0 |. . . |0 |e1 |e2 |. . . |en−k ] for 0 ≤ k ≤ n

For the base case, k = 0, and the definition of J0 = In establishes the claim.

For the induction step, first note that Je1 = 0 and Jei = ei−1 for 2 ≤ i ≤ n.
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Then, assuming the claim is true for k, we examine the k + 1 case,

Jk+1 = JJk

= J [0 |0 |. . . |0 |e1 |e2 |. . . |en−k ]

= [J0 |J0 |. . . |J0 |Je1 |Je2 |. . . |Jen−k ]

= [0 |0 |. . . |0 |0 |e1 |e2 |. . . |en−k−1 ]

=
[
0 |0 |. . . |0 |e1 |e2 |. . .

∣∣en−(k+1)

]
This concludes the induction.

So Jk has a nonzero entry (a one) in row n−k and column n, for 0 ≤ k ≤ n−1,
and is therefore a nonzero matrix. However,

Jn = [0 |0 |. . . |0 ] = O

Thus, by 15, J is nilpotent of index n.

3.3 Jordan Canonical Form

Nilpotent matrices and generalized eigenspaces are the essential ingredients for a
canonical form applicable to any square matrix. In this section will progress from
the specialized case of a nilpotent matrix to the totally general case of any square
matrix.

3.3.1 Canonical Form for Nilpotent Linear Transformations

Our main purpose in this section is to find a basis so that a nilpotent linear transfor-
mation will have a pleasing, nearly-diagonal matrix representation. Of course, we
will not have a definition for “pleasing,” nor for “nearly-diagonal.” But the short
answer is that our preferred matrix representation will be built up from Jordan
blocks, Jk (0). Here’s the theorem. You will find Example 〈〈example-canonical-
form-nilpotent-size-6-index-4〉〉, just following, helpful as you study this proof, since
it uses the same notation, and is large enough to (barely) illustrate the full generality
of the theorem.

Theorem 3.11. Suppose that T : V → V is a nilpotent linear transformation of
index p. Then there is a basis for V so that the matrix representation, MT

B,B, is
block diagonal with each block being a Jordan block, Jk (0). The size of the largest
block is the index p, and the total number of blocks is the nullity of T , n (T ).

Proof. The proof is constructive, as we will explicitly manufacture the basis, and
so can be used in practice. As we begin, the basis vectors will not be in the proper
order, but we will rearrange them at the end of the proof. For convenience, define
ni = n

(
T i
)
, so for example, n0 = 0, n1 = n (T ) and np = n (T p) = dim (V ). Define

si = ni − ni−1, for 1 ≤ i ≤ p, so we can think of si as “how much bigger” K
(
T i
)

is

than K
(
T i−1

)
. In particular, Theorem 3.8 implies that si > 0 for 1 ≤ i ≤ p.

We build a set of vectors zi,j , 1 ≤ i ≤ p, 1 ≤ j ≤ si. Each zi,j will be an
element of K

(
T i
)

and not an element of K
(
T i−1

)
. In total, we will obtain a linearly

independent set of
∑p
i=1 si =

∑p
i=1 ni − ni−1 = np − n0 = dim (V ) vectors that

form a basis of V . We construct this set in pieces, starting at the “wrong” end.
Our procedure will build a series of subspaces, Zi, each lying in between K

(
T i−1

)
and K

(
T i
)
, having bases zi,j , 1 ≤ j ≤ si, and which together equal V as a direct

sum. Now would be a good time to review the results on direct sums collected in
Section 1.2.
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We build the subspace Zp first (this is what we meant by “starting at the wrong
end”). K

(
T p−1

)
is a proper subspace of K(T p) = V (Theorem 3.8). Theorem 1.2

says that there is a subspace of V that will pair with the subspace K
(
T p−1

)
to form

a direct sum of V . Call this subspace Zp, and choose vectors zp,j , 1 ≤ j ≤ sp as a
basis of Zp, which we will denote as Bp. Note that we have a fair amount of freedom
in how to choose these first basis vectors. Several observations will be useful in the
next step. First V = K

(
T p−1

)
⊕ Zp. The basis Bp =

{
zp,1, zp,2, zp,3, . . . , zp,sp

}
is

linearly independent. For 1 ≤ j ≤ sp, zp,j ∈ K(T p) = V . Since the two subspaces
of a direct sum have no nonzero vectors in common, for 1 ≤ j ≤ sp, zp,j 6∈ K

(
T p−1

)
.

That was comparably easy.

If obtaining Zp was easy, getting Zp−1 will be harder. We will repeat the next
step p − 1 times, and so will do it carefully the first time. Eventually, Zp−1 will
have dimension sp−1. However, obtaining the first sp vectors of a basis for Zp−1
are straightforward. Define zp−1,j = T (zp,j), 1 ≤ j ≤ sp. Notice that we have no
choice in creating these vectors, they are a consequence of our choices for zp,j . In
retrospect (i.e. on a second reading of this proof), you will recognize this as the key
step in realizing a matrix representation of a nilpotent linear transformation with
Jordan blocks. We need to know that this set of vectors is linearly independent.
We consider a relation of linear dependence on zp−1,j , 1 ≤ j ≤ sp, and massage it,

0 = a1zp−1,1 + a2zp−1,2 + a3zp−1,3 + · · ·+ aspzp−1,sp

= a1T (zp,1) + a2T (zp,2) + a3T (zp,3) + · · ·+ aspT
(
zp,sp

)
= T

(
a1zp,1 + a2zp,2 + a3zp,3 + · · ·+ aspzp,sp

)
Define

x = a1zp,1 + a2zp,2 + a3zp,3 + · · ·+ aspzp,sp

The statement just above means that x ∈ K(T ) ⊆ K
(
T p−1

)
(Theorem 3.8). As

defined, x is a linear combination of the basis vectors Bp, and therefore x ∈ Zp.
Thus x ∈ K

(
T p−1

)
∩ Zp. Because V = K

(
T p−1

)
⊕ Zp, Theorem 1.4 tells us that

x = 0. Now we recognize the definition of x as a relation of linear dependence on the
linearly independent set Bp, and therefore conclude that a1 = a2 = · · · = asp = 0.
This establishes the linear independence of zp−1,j , 1 ≤ j ≤ sp.

We also need to know where the vectors zp−1,j , 1 ≤ j ≤ sp live. First we
demonstrate that they are members of K

(
T p−1

)
.

T p−1 (zp−1,j) = T p−1 (T (zp,j)) = T p (zp,j) = 0

So zp−1,j ∈ K
(
T p−1

)
, 1 ≤ j ≤ sp.

Moreover, these vectors are not elements of K
(
T p−2

)
. Suppose to the contrary

that zp−1,j ∈ K
(
T p−2

)
. Then

0 = T p−2 (zp−1,j) = T p−2 (T (zp,j)) = T p−1 (zp,j)

which contradicts the earlier statement that zp,j 6∈ K
(
T p−1

)
. So zp−1,j 6∈ K

(
T p−2

)
,

1 ≤ j ≤ sp.
Now choose any basis Cp−2 =

{
u1, u2, u3, . . . , unp−2

}
for K

(
T p−2

)
. We want

to extend this basis by adding in the zp−1,j to span a subspace of K
(
T p−1

)
. But

first we establish that this set is linearly independent. Let ak, 1 ≤ k ≤ np−2 and
bj , 1 ≤ j ≤ sp be the scalars in a relation of linear dependence,

0 = a1u1 + a2u2 + · · ·+ anp−2
unp−2

+ b1zp−1,1 + b2zp−1,2 + · · ·+ bspzp−1,sp
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Then,

0 = T p−2 (0)

= T p−2
(
a1u1 + a2u2 + · · ·+ anp−2

unp−2
+ b1zp−1,1 + b2zp−1,2 + · · ·+ bspzp−1,sp

)
= a1T

p−2 (u1) + a2T
p−2 (u2) + · · ·+ anp−2

T p−2
(
unp−2

)
+

b1T
p−2 (zp−1,1) + b2T

p−2 (zp−1,2) + · · ·+ bspT
p−2 (zp−1,sp)

= a10 + a20 + · · ·+ anp−20+

b1T
p−2 (zp−1,1) + b2T

p−2 (zp−1,2) + · · ·+ bspT
p−2 (zp−1,sp)

= b1T
p−2 (zp−1,1) + b2T

p−2 (zp−1,2) + · · ·+ bspT
p−2 (zp−1,sp)

= b1T
p−2 (T (zp,1)) + b2T

p−2 (T (zp,2)) + · · ·+ bspT
p−2 (T (zp,sp))

= b1T
p−1 (zp,1) + b2T

p−1 (zp,2) + · · ·+ bspT
p−1 (zp,sp)

= T p−1
(
b1zp,1 + b2zp,2 + · · ·+ bspzp,sp

)
Define

y = b1zp,1 + b2zp,2 + · · ·+ bspzp,sp

The statement just above means that y ∈ K
(
T p−1

)
. As defined, y is a linear

combination of the basis vectors Bp, and therefore y ∈ Zp. Thus y ∈ K
(
T p−1

)
∩Zp.

Because V = K
(
T p−1

)
⊕ Zp, Theorem 1.4 tells us that y = 0. Now we recognize

the definition of y as a relation of linear dependence on the linearly independent
set Bp, and therefore b1 = b2 = · · · = bsp = 0. Return to the full relation of linear
dependence with both sets of scalars (the ai and bj). Now that we know that bj = 0
for 1 ≤ j ≤ sp, this relation of linear dependence simplifies to a relation of linear
dependence on just the basis Cp−1. Therefore, ai = 0, 1 ≤ ai ≤ np−1 and we have
the desired linear independence.

Define a new subspace of K
(
T p−1

)
by

Qp−1 =
〈{

u1, u2, u3, . . . , unp−1
, zp−1,1, zp−1,2, zp−1,3, . . . , zp−1,sp

}〉
By Theorem 1.2 there exists a subspace of K

(
T p−1

)
which will pair with Qp−1 to

form a direct sum. Call this subspace Rp−1, so by definition, K
(
T p−1

)
= Qp−1 ⊕

Rp−1. We are interested in the dimension of Rp−1. Note first, that since the
spanning set of Qp−1 is linearly independent, dim (Qp−1) = np−2 + sp. Then

dim (Rp−1) = dim
(
K
(
T p−1

))
− dim (Qp−1)

= np−1 − (np−2 + sp) = (np−1 − np−2)− sp = sp−1 − sp

Notice that if sp−1 = sp, then Rp−1 is trivial. Now choose a basis of Rp−1, and
denote these sp−1 − sp vectors as zp−1,sp+1, zp−1,sp+2, zp−1,sp+3, . . . , zp−1,sp−1 .
This is another occassion to notice that we have some freedom in this choice.

We now have K
(
T p−1

)
= Qp−1 ⊕ Rp−1, and we have bases for each of the two

subspaces. The union of these two bases will therefore be a linearly independent
set in K

(
T p−1

)
with size

(np−2 + sp) + (sp−1 − sp) = np−2 + sp−1 = np−2 + np−1 − np−2
= np−1 = dim

(
K
(
T p−1

))
So with the proper size the following set is a basis of K

(
T p−1

)
,{

u1, u2, . . . , unp−2
, zp−1,1, zp−1,2, . . . , zp−1,sp , zp−1,sp+1, zp−1,sp+2, . . . , zp−1,sp−1

}



76 CHAPTER 3. CANONICAL FORMS

We built up this basis in three parts, we will now split it in half. Define the subspace
Zp−1 by

Zp−1 = 〈Bp−1〉 =
〈{

zp−1,1, zp−1,2, . . . , zp−1,sp−1

}〉
where we have implicitly denoted the basis as Bp−1. Then 1.1 allows us to split up
the basis for K

(
T p−1

)
as Cp−1 ∪Bp−1 and write

K
(
T p−1

)
= K

(
T p−2

)
⊕ Zp−1 >

Whew! This is a good place to recap what we have achieved. The vectors zi,j form
bases for the subspaces Zi and right now

V = K
(
T p−1

)
⊕ Zp = K

(
T p−2

)
⊕ Zp−1 ⊕ Zp

The key feature of this decomposition of V is that the first sp vectors in the
basis for Zp−1 are outputs of the linear transformation T using the basis vectors of
Zp as inputs.

Now we want to further decompose K
(
T p−2

)
, into K

(
T p−3

)
and Zp−2. The

procedure is the same as above, so we will only sketch the key steps. Checking the
details proceeds in the same manner as above. Technically, we could have set up
the preceding as the induction step in a proof by induction (Proof Technique I),
but this probably would make the proof harder to understand.

Apply T to each element of Bp−1, to create vectors zp−2,j , 1 ≤ j ≤ sp−1. These
vectors form a linearly independent set, and each is an element of K

(
T p−2

)
, but

not an element of K
(
T p−3

)
. Grab a basis Cp−3 of K

(
T p−3

)
and add on the newly-

created vectors zp−2,j , 1 ≤ j ≤ sp−1. This expanded set is linearly independent,
and we can define a subspace Qp−2 with this set as its basis. Theorem 1.2 gives us
a subspace Rp−2 such that K

(
T p−2

)
= Qp−2 ⊕ Rp−2. Vectors zp−2,j , sp−1 + 1 ≤

j ≤ sp−2 are chosen as a basis for Rp−2 once the relevant dimensions have been
verified. The union of Cp−3 and zp−2,j , 1 ≤ j ≤ sp−2 then form a basis of K

(
T p−2

)
,

which can be split into two parts to yield the decomposition

K
(
T p−2

)
= K

(
T p−3

)
⊕ Zp−2

Here Zp−2 is the subspace of K
(
T p−2

)
with basis Bp−2 = {zp−2,j | 1 ≤ j ≤ sp−2}.

Finally,

V = K
(
T p−1

)
⊕ Zp = K

(
T p−2

)
⊕ Zp−1 ⊕ Zp = K

(
T p−3

)
⊕ Zp−2 ⊕ Zp−1 ⊕ Zp

Again, the key feature of this decomposition is that the first vectors in the basis
of Zp−2 are outputs of T using vectors from the basis Zp−1 as inputs (and in turn,
some of these inputs are outputs of T derived from inputs in Zp).

Now assume we repeat this procedure until we decompose K
(
T 2
)

into subspaces

K(T ) and Z2. Finally, decompose K(T ) into subspaces K
(
T 0
)

= K(In) = {0} and
Z1, so that we recognize the vectors z1,j , 1 ≤ j ≤ s1 = n1 as elements of K(T ). The
set

B = B1 ∪B2 ∪B3 ∪ · · · ∪Bp = {zi,j | 1 ≤ i ≤ p, 1 ≤ j ≤ si}

is linearly independent by Theorem 1.5 and has size

p∑
i=1

si =

p∑
i=1

ni − ni−1 = np − n0 = dim (V )

So B is a basis of V .
We desire a matrix representation of T relative to B, but first we will reorder

the elements of B. The following display lists the elements of B in the desired order,
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when read across the rows left-to-right in the usual way. Notice that we established
the existence of these vectors column-by-column, and beginning on the right.

z1,1 z2,1 z3,1 · · · zp,1

z1,2 z2,2 z3,2 · · · zp,2

...
...

z1,sp z2,sp z3,sp · · · zp,sp

z1,sp+1 z2,sp+1 z3,sp+1 · · ·
...

...

z1,s3 z2,s3 z3,s3
...

z1,s2 z2,s2
...

z1,s1

It is difficult to layout this table with the notation we have been using, but it
would not be especially useful to invent some notation to overcome the difficulty.
(One approach would be to define something like the inverse of the nonincreasing
function, i→ si.) Do notice that there are s1 = n1 rows, and p columns. Column i
is the basis Bi. The vectors in the first column are elements of K(T ). Each row is
the same length, or shorter, than the one above it. If we apply T to any vector in
the table, other than those in the first column, the output is the preceding vector
in the row.

Now contemplate the matrix representation of T relative to B as we read across
the rows of the table above. In the first row, T (z1,1) = 0, so the first column of the
representation is the zero column. Next, T (z2,1) = z1,1, so the second column of the
representation is a vector with a single one in the first entry, and zeros elsewhere.
Next, T (z3,1) = z2,1, so column 3 of the representation is a zero, then a one, then all
zeros. Continuing in this vein, we obtain the first p columns of the representation,
which is the Jordan block Jp (0) followed by rows of zeros.

When we apply T to the basis vectors of the second row, what happens? Apply-
ing T to the first vector, the result is the zero vector, so the representation gets a
zero column. Applying T to the second vector in the row, the output is simply the
first vector in that row, making the next column of the representation all zeros plus
a lone one, sitting just above the diagonal. Continuing, we create a Jordan block,
sitting on the diagonal of the matrix representation. It is not possible in general to
state the size of this block, but since the second row is no longer than the first, it
cannot have size larger than p.

Since there are as many rows as the dimension of K(T ), the representation con-
tains as many Jordan blocks as the nullity of T , n (T ). Each successive block is
smaller than the preceding one, with the first, and largest, having size p. The
blocks are Jordan blocks since the basis vectors zi,j were often defined as the result
of applying T to other elements of the basis already determined, and then we re-
arranged the basis into an order that placed outputs of T just before their inputs,
excepting the start of each row, which was an element of K(T ).

The proof of Theorem 3.11 is constructive, so we can use it to create bases of
nilpotent linear transformations with pleasing matrix representations. Recall that
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Theorem 3.7 told us that nilpotent linear transformations are almost never diago-
nalizable, so this is progress. As we have hinted before, with a nice representation of
nilpotent matrices, it will not be difficult to build up representations of other non-
diagonalizable matrices. Here is the promised example which illustrates the previous
theorem. It is a useful companion to your study of the proof of Theorem 3.11.

Example 26. The 6 × 6 matrix, A, of Example 19 is nilpotent. If we define the
linear transformation T : C6 → C6 by T (x) = Ax, then T is nilpotent and we can
seek a basis of C6 that yields a matrix representation with Jordan blocks on the
diagonal. Since T has index 4 and nullity 2, from Theorem 3.11 we can expect the
largest Jordan block to be J4 (0), and there will be just 2 blocks. This only leaves
enough room for the second block to have size 2.

To determine nullities, we will recycle the bases for the null spaces of the powers
of A from Example 21, rather than recomputing them. We will also use the same
notation used in the proof of Theorem 3.11.

To begin, s4 = n4 − n3 = 6− 5 = 1, so we need one vector of K
(
T 4
)

= C6, that

is not in K
(
T 3
)
, to be a basis for Z4. We have a lot of latitude in this choice, and

we have not described any sure-fire method for constructing a vector outside of a
subspace. Looking at the basis for K

(
T 3
)

we see that if a vector is in this subspace,
and has a nonzero value in the first entry, then it must also have a nonzero value
in the fourth entry. So the vector

z4,1 =


1
0
0
0
0
0


will not be an element of K

(
T 3
)
. (Notice that many other choices could be made

here, so our basis will not be unique.) This completes the determination of Zp = Z4.
Next, s3 = n3 − n2 = 5− 4 = 1, so we again need just a single basis vector for

Z3. We start by evaluating T with each basis vector of Z4,

z3,1 = T (z4,1) = Az4,1 =


−3
−3
−3
−3
−3
−2


Since s3 = s4, the subspace R3 is trivial, and there is nothing left to do, z3,1 is the
lone basis vector of Z3.

Now s2 = n2 − n1 = 4 − 2 = 2, so the construction of Z2 will not be as simple
as the construction of Z3. We first apply T to the basis vector of Z2,

z2,1 = T (z3,1) = Az3,1 =


1
0
3
1
0
−1


The two basis vectors of K

(
T 1
)
, together with z2,1, form a basis for Q2. Because

dim
(
K
(
T 2
))
− dim (Q2) = 4− 3 = 1 we need only find a single basis vector for R2.
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This vector must be an element of K
(
T 2
)
, but not an element of Q2. Again, there

is a variety of vectors that fit this description, and we have no precise algorithm for
finding them. Since they are plentiful, they are not too hard to find. We add up
the four basis vectors of K

(
T 2
)
, ensuring an element of K

(
T 2
)
. Then we check to

see if the vector is a linear combination of three vectors: the two basis vectors of
K
(
T 1
)

and z2,1. Having passed the tests, we have chosen

z2,2 =


2
1
2
2
2
1



Thus, Z2 = 〈{z2,1, z2,2}〉.

Lastly, s1 = n1 − n0 = 2− 0 = 2. Since s2 = s1, we again have a trivial R1 and
need only complete our basis by evaluating the basis vectors of Z2 with T ,

z1,1 = T (z2,1) = Az2,1 =


1
1
0
1
1
1

 z1,2 = T (z2,2) = Az2,2 =


−2
−2
−5
−2
−1
0



Now we reorder these vectors as the desired basis,

B = {z1,1, z2,1, z3,1, z4,1, z1,2, z2,2}

We now apply Definition MR to build a matrix representation of T relative to
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B,

ρB (T (z1,1)) = ρB (Az1,1) = ρB (0) =


0
0
0
0
0
0



ρB (T (z2,1)) = ρB (Az2,1) = ρB (z1,1) =


1
0
0
0
0
0



ρB (T (z3,1)) = ρB (Az3,1) = ρB (z2,1) =


0
1
0
0
0
0



ρB (T (z4,1)) = ρB (Az4,1) = ρB (z3,1) =


0
0
1
0
0
0



ρB (T (z1,2)) = ρB (Az1,2) = ρB (0) =


0
0
0
0
0
0



ρB (T (z2,2)) = ρB (Az2,2) = ρB (z1,2) =


0
0
0
0
1
0


Installing these vectors as the columns of the matrix representation we have

MT
B,B =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


which is a block diagonal matrix with Jordan blocks J4 (0) and J2 (0).

If we construct the matrix S having the vectors of B as columns, then Theo-

rem SCB tells us that a similarity transformation by S relates the original matrix
representation of T with the matrix representation consisting of Jordan blocks, in
other words, S−1AS = MT

B,B .
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Notice that constructing interesting examples of matrix representations requires
domains with dimensions bigger than just two or three. Going forward our examples
will get even bigger.

3.3.2 Restrictions to Generalized Eigenspaces

We now know how to make canonical matrix representations of a what seems to
be a narrow class of linear transformations—the nilpotent ones (Theorem 3.11).
However, since the restriction of any linear transformation to one of its generalized
eigenspace is only a small adjustment away from being a nilpotent linear trans-
formation (Theorem 3.9) we can extend the utility of our previous representation
easily.

Theorem 3.12. Suppose that T : V → V is a linear transformation with eigen-
value λ. Then there is a basis of the the generalized eigenspace GT (λ) such that
the restriction T |GT (λ) : GT (λ) → GT (λ) has a matrix representation that is block
diagonal where each block is a Jordan block of the form Jk (λ) (with varying values
of k).

Proof. Theorem 3.9 tells us that T |GT (λ)−λIGT (λ) is a nilpotent linear transforma-
tion. Theorem 3.11 tells us that a nilpotent linear transformation has a basis for its
domain that yields a matrix representation that is block diagonal where the blocks
are Jordan blocks of the form Jk (0). So let B be a basis of GT (λ) that yields such
a matrix representation for T |GT (λ) − λIGT (λ).

We can write

T |GT (λ) =
(
T |GT (λ) − λIGT (λ)

)
+ λIGT (λ)

Then the matrix representation of λIGT (λ) relative to the basis B is then simply
the diagonal matrix λIm, where m = dim (GT (λ)). So we have the rather unwieldy
expression,

M
T |GT (λ)

B,B = M
(T |GT (λ)−λIGT (λ))+λIGT (λ)

B,B = M
T |GT (λ)−λIGT (λ)

B,B + λM
IGT (λ)

B,B

The first representation in the final experssion has Jordan blocks with zero in every
diagonal entry by Theorem 3.11, while the second representation has λ in every
diagonal entry of the matrix. The result of adding the two representations is to
convert the Jordan blocks from the form Jk (0) to the form Jk (λ).

Of course, Theorem 3.11 provides some extra information on the sizes of the
Jordan blocks in a representation and we could carry over this information to The-
orem 3.9, but we will save this description and incorporate it into our final major
result in the next section.

3.3.3 Jordan Canonical Form

Begin with any linear transformation that has an identical domain and codomain.
Build a block diagonal representation from a direct sum decomposition into (in-
variant) generalized eigenspaces. For each generalized eigenspace, further refine
the block into a sequence of Jordan blocks (with common diagonal elements) from
the restriction to the generalized eigenspace, which is very nearly nilpotent. Then
you have Jordan canonical form. Other than cosmetic reorderings, it is a unique
representative of the equivalence class of similar matrices.

We remove the ambiguity from trivial reorderings of eigenvalues and Jordan
blocks with a careful definition.
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Definition 18. A square matrix is in Jordan canonical form if it meets the
following requirements:

1. The matrix is block diagonal.

2. Each block is a Jordan block.

3. If ρ < λ then the block Jk (ρ) occupies rows with indices greater than the
indices of the rows occupied by J` (λ).

4. If ρ = λ and ` < k, then the block J` (λ) occupies rows with indices greater
than the indices of the rows occupied by Jk (λ).

Theorem 3.13. Suppose T : V → V is a linear transformation. Then there is a
basis B for V such that the matrix representation of T with the following properties:

1. The matrix representation is in Jordan canonical form.

2. If Jk (λ) is one of the Jordan blocks, then λ is an eigenvalue of T .

3. For each eigenvalue λ, the largest block of the form Jk (λ) has size equal to
the index of λ, ιT (λ).

4. For each eigenvalue λ, the number of blocks of the form Jk (λ) is the geometric
multiplicity of λ, γT (λ).

5. For each eigenvalue λ, the number of rows occupied by blocks of the form
Jk (λ) is the algebraic multiplicity of λ, αT (λ).

Proof. This theorem is really just the consequence of applying to T , consecutively,
Theorem 3.4, Theorem 3.12 and Theorem 3.11.

Theorem 3.4 gives us a decomposition of V into generalized eigenspaces, one for
each distinct eigenvalue. Since these generalized eigenspaces are invariant relative
to T , this provides a block diagonal matrix representation where each block is the
matrix representation of the restriction of T to the generalized eigenspace.

Restricting T to a generalized eigenspace results in a “nearly nilpotent” linear
transformation, as stated more precisely in Theorem ??. We unravel Theorem ?? in
the proof of Theorem 3.12 so that we can apply Theorem 3.11 about representations
of nilpotent linear transformation.

We know the dimension of a generalized eigenspace is the algebraic multiplicity
of the eigenvalue (Corollary 3.5), so the blocks associated with the generalized
eigenspaces are square with a size equal to the algebraic multiplicity. In refining
the basis for a block associatred with a single eigenvalue, and producing Jordan
blocks, the results of Theorem 3.11 apply. The total number of blocks will be the
nullity of T |GT (λ)−λIGT (λ), which is the geometric multiplicity of λ as an eigenvalue
of T (Definition GME). The largest of the Jordan blocks will have size equal to
the index of the nilpotent linear transformation T |GT (λ) − λIGT (λ), which is exactly
the definition of the index of the eigenvalue λ (Definition 16).

Before we do some examples of this result, notice how close Jordan canonical
form is to a diagonal matrix. Or, equivalently, notice how close we have come to
diagonalizing a matrix (Definition DZM). We have a matrix representation which
has diagonal entries that are the eigenvalues of a matrix. Each occurs on the
diagonal as many times as the algebraic multiplicity. However, when the geometric
multiplicity is strictly less than the algebraic multiplicity, we have some entries in
the representation just above the diagonal (the “superdiagonal”). Furthermore, we
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have some idea how often this happens if we know the geometric multiplicity and
the index of the eigenvalue.

We now recognize just how plain a diagonalizable linear transformation really
is. For each eigenvalue, the generalized eigenspace is just the regular eigenspace,
and it decomposes into a direct sum of one-dimensional subspaces, each spanned
by a different eigenvector chosen from a basis of eigenvectors for the eigenspace.

Some authors create matrix representations of nilpotent linear transformations
where the Jordan block has the ones just below the diagonal (the “subdiagonal”).
No matter, it is really the same, just different. We have also defined Jordan canon-
ical form to place blocks for the larger eigenvalues earlier, and for blocks with the
same eigenvalue, we place the larger sized blocks earlier. This is fairly standard,
but there is no reason we could not order the blocks differently. It would be the
same, just different. The reason for choosing some ordering is to be assured that
there is just one canonical matrix representation for each linear transformation.

Example 27. Suppose that T : C10 → C10 is the linear transformation defined by
T (x) = Ax where

A =



−6 9 −7 −5 5 12 −22 14 8 21
−3 5 −3 −1 2 7 −12 9 1 12
8 −9 8 6 0 −14 25 −13 −4 −26
−7 9 −7 −5 0 13 −23 13 2 24
0 −1 0 −1 −3 −2 3 −4 −2 −3
3 2 1 2 9 −1 1 5 5 −5
−1 3 −3 −2 4 3 −6 4 4 3
3 −4 3 2 1 −5 9 −5 1 −9
0 2 0 0 2 2 −4 4 2 4
−4 4 −5 −4 −1 6 −11 4 1 10


We will find a basis for C10 that will yield a matrix representation of T in

Jordan canonical form. First we find the eigenvalues, and their multiplicities, with
the techniques of Chapter E.

λ = 2 αT (2) = 2 γT (2) = 2

λ = 0 αT (0) = 3 γT (−1) = 2

λ = −1 αT (−1) = 5 γT (−1) = 2

For each eigenvalue, we can compute a generalized eigenspace. By Theorem 3.4
we know that C10 will decompose into a direct sum of these invariant eigenspaces,
and we can restrict T to each part of this decomposition. At this stage we know
that the Jordan canonical form will be block diagonal with blocks of size 2, 3 and
5, since the dimensions of the generalized eigenspaces are equal to the algebraic
multiplicities of the eigenvalues (Theorem 3.5). The geometric multiplicities tell us
how many Jordan blocks occupy each of the three larger blocks, but we will discuss
this as we analyze each eigenvalue. We do not yet know the index of each eigenvalue
(though we can easily infer it for λ = 2) and even if we did have this information, it
only determines the size of the largest Jordan block (per eigenvalue). We will press
ahead, considering each eigenvalue one at a time.

The eigenvalue λ = 2 has “full” geometric multiplicity, and is not an impediment
to diagonalizing T . We will treat it in full generality anyway. First we compute the

generalized eigenspace. Since Theorem 3.3 says that GT (2) = K
(

(T − 2IC10)
10
)

we
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can compute this generalized eigenspace as a null space derived from the matrix A,

(A− 2I10)
10 RREF−−−−→



1 0 0 0 0 0 0 0 −2 −1
0 1 0 0 0 0 0 0 −1 −1
0 0 1 0 0 0 0 0 1 2
0 0 0 1 0 0 0 0 −1 −2
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 −2 1
0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



GT (2) = K
(

(A− 2I10)
10
)

=

〈




2
1
−1
1
−1
2
1
0
1
0


,



1
1
−2
2
0
−1
0
−1
0
1





〉

The restriction of T to GT (2) relative to the two basis vectors above has a matrix
representation that is a 2 × 2 diagonal matrix with the eigenvalue λ = 2 as the
diagonal entries. So these two vectors will be the first two vectors in our basis for
C10,

v1 =



2
1
−1
1
−1
2
1
0
1
0


v2 =



1
1
−2
2
0
−1
0
−1
0
1



Notice that it was not strictly necessary to compute the 10-th power of A−2I10.
With αT (2) = γT (2) the null space of the matrix A − 2I10 contains all of the
generalized eigenvectors of T for the eigenvalue λ = 2. But there was no harm in
computing the 10-th power either. This discussion is equivalent to the observation
that the linear transformation T |GT (2) : GT (2) → GT (2) is nilpotent of index 1. In
other words, ιT (2) = 1.

The eigenvalue λ = 0 will not be quite as simple, since the geometric multiplicity
is strictly less than the geometric multiplicity. As before, we first compute the

generalized eigenspace. Since Theorem 3.3 says that GT (0) = K
(

(T − 0IC10)
10
)

we
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can compute this generalized eigenspace as a null space derived from the matrix A,

(A− 0I10)
10 RREF−−−−→



1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 −1 0 −1 0
0 0 1 0 0 0 0 0 1 2
0 0 0 1 0 0 0 0 −2 −1
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 −1 0 −1 2
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



GT (0) = K
(

(A− 0I10)
10
)

=

〈




0
1
0
0
0
1
1
0
0
0


,



1
1
−1
2
−1
1
0
−1
1
0


,



1
0
−2
1
0
−2
0
0
0
1





〉
= 〈F 〉

So dim (GT (0)) = 3 = αT (0), as expected. We will use these three basis vectors for
the generalized eigenspace to construct a matrix representation of T |GT (0), where F
is being defined implicitly as the basis of GT (0). We construct this representation
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as usual, applying Definition MR,

ρF


T |GT (0)





0
1
0
0
0
1
1
0
0
0






= ρF





−1
0
2
−1
0
2
0
0
0
−1




= ρF


(−1)



1
0
−2
1
0
−2
0
0
0
1




=

 0
0
−1



ρF


T |GT (0)





1
1
−1
2
−1
1
0
−1
1
0






= ρF





1
0
−2
1
0
−2
0
0
0
1




= ρF


(1)



1
0
−2
1
0
−2
0
0
0
1




=

0
0
1



ρF


T |GT (0)





1
0
−2
1
0
−2
0
0
0
1






= ρF





0
0
0
0
0
0
0
0
0
0




=

0
0
0



So we have the matrix representation

M = M
T |GT (0)

F,F =

 0 0 0
0 0 0
−1 1 0


By Theorem 3.9 we can obtain a nilpotent matrix from this matrix representation

by subtracting the eigenvalue from the diagonal elements, and then we can apply
Theorem 3.11 to M−(0)I3. First check that (M − (0)I3)

2
= O, so we know that the

index of M − (0)I3 as a nilpotent matrix, and that therefore λ = 0 is an eigenvalue
of T with index 2, ιT (0) = 2. To determine a basis of C3 that converts M−(0)I3 to
canonical form, we need the null spaces of the powers of M−(0)I3. For convenience,
set N = M − (0)I3.

N
(
N1
)

=

〈
1

1
0

 ,
0

0
1


〉

N
(
N2
)

=

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

= C3
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Then we choose a vector from N
(
N2
)

that is not an element of N
(
N1
)
. Any vector

with unequal first two entries will fit the bill, say

z2,1 =

1
0
0



where we are employing the notation in Theorem 3.11. The next step is to multiply
this vector by N to get part of the basis for N

(
N1
)
,

z1,1 = Nz2,1 =

 0 0 0
0 0 0
−1 1 0

1
0
0

 =

 0
0
−1



We need a vector to pair with z1,1 that will make a basis for the two-dimensional
subspace N

(
N1
)
. Examining the basis for N

(
N1
)

we see that a vector with its
first two entries equal will do the job.

z1,2 =

1
1
0



Reordering, we find the basis,

C = {z1,1, z2,1, z1,2} =


 0

0
−1

 ,
1

0
0

 ,
1

1
0


From this basis, we can get a matrix representation of N (when viewed as a

linear transformation) relative to the basis C for C3,

0 1 0
0 0 0
0 0 0

 =

[
J2 (0) O
O J1 (0)

]

Now we add back the eigenvalue λ = 0 to the representation of N to obtain a
representation for M . Of course, with an eigenvalue of zero, the change is not
apparent, so we will not display the same matrix again. This is the second block of
the Jordan canonical form for T . However, the three vectors in C will not suffice as
basis vectors for the domain of T —they have the wrong size! The vectors in C are
vectors in the domain of a linear transformation defined by the matrix M . But M
was a matrix representation of T |GT (0) − 0IGT (0) relative to the basis F for GT (0).
We need to “uncoordinatize” each of the basis vectors in C to produce a linear
combination of vectors in F that will be an element of the generalized eigenspace
GT (0). These will be the next three vectors of our final answer, a basis for C10 that
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has a pleasing matrix representation.

v3 = ρ−1F

 0
0
−1

 = 0



0
1
0
0
0
1
1
0
0
0


+ 0



1
1
−1
2
−1
1
0
−1
1
0


+ (−1)



1
0
−2
1
0
−2
0
0
0
1


=



−1
0
2
−1
0
2
0
0
0
−1



v4 = ρ−1F

1
0
0

 = 1



0
1
0
0
0
1
1
0
0
0


+ 0



1
1
−1
2
−1
1
0
−1
1
0


+ 0



1
0
−2
1
0
−2
0
0
0
1


=



0
1
0
0
0
1
1
0
0
0



v5 = ρ−1F

1
1
0

 = 1



0
1
0
0
0
1
1
0
0
0


+ 1



1
1
−1
2
−1
1
0
−1
1
0


+ 0



1
0
−2
1
0
−2
0
0
0
1


=



1
2
−1
2
−1
2
1
−1
1
0



Five down, five to go. Basis vectors, that is. λ = −1 is the smallest eigen-
value, but it will require the most computation. First we compute the generalized

eigenspace. Since Theorem 3.3 says that GT (−1) = K
(

(T − (−1)IC10)
10
)

we can
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compute this generalized eigenspace as a null space derived from the matrix A,

(A− (−1)I10)
10 RREF−−−−→



1 0 1 0 1 0 −1 1 0 1
0 1 0 0 1 0 0 1 0 0
0 0 0 1 1 0 1 0 0 −2
0 0 0 0 0 1 −2 1 0 2
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



GT (−1) = K
(

(A− (−1)I10)
10
)

=

〈




−1
0
1
0
0
0
0
0
0
0


,



−1
−1
0
−1
1
0
0
0
0
0


,



1
0
0
−1
0
2
1
0
0
0


,



−1
−1
0
0
0
−1
0
1
0
0


,



−1
0
0
2
0
−2
0
0
0
1





〉
= 〈F 〉

So dim (GT (−1)) = 5 = αT (−1), as expected. We will use these five basis vectors
for the generalized eigenspace to construct a matrix representation of T |GT (−1),
where F is being recycled and defined now implicitly as the basis of GT (−1).
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We construct this representation as usual, applying Definition MR,

ρF


T |GT (−1)





−1
0
1
0
0
0
0
0
0
0






= ρF





−1
0
0
0
0
−2
−2
0
0
−1




(3.1)

= ρF


0



−1
0
1
0
0
0
0
0
0
0


+ 0



−1
−1
0
−1
1
0
0
0
0
0


+ (−2)



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ (−1)



−1
0
0
2
0
−2
0
0
0
1




=


0
0
−2
0
−1



ρF


T |GT (−1)





−1
−1
0
−1
1
0
0
0
0
0






= ρF





7
1
−5
3
−1
2
4
0
0
3




(3.2)

= ρF


(−5)



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ 4



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ 3



−1
0
0
2
0
−2
0
0
0
1




=


−5
−1
4
0
3

 (3.3)

ρF


T |GT (−1)





1
0
0
−1
0
2
1
0
0
0






= ρF





1
0
−1
1
0
0
1
0
0
1




(3.4)

= ρF


(−1)



−1
0
1
0
0
0
0
0
0
0


+ 0



−1
−1
0
−1
1
0
0
0
0
0


+ 1



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1




=


−1
0
1
0
1

 (3.5)

ρF


T |GT (−1)





−1
−1
0
0
0
−1
0
1
0
0






= ρF





−1
0
2
−2
−1
1
−1
1
0
−2




(3.6)

= ρF


2



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ (−1)



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ (−2)



−1
0
0
2
0
−2
0
0
0
1




=


2
−1
−1
1
−2



(3.7)

ρF


T |GT (−1)





−1
0
0
2
0
−2
0
0
0
1






= ρF





−7
−1
6
−5
−1
−2
−6
2
0
−6




(3.8)

= ρF


6



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ (−6)



1
0
0
−1
0
2
1
0
0
0


+ 2



−1
−1
0
0
0
−1
0
1
0
0


+ (−6)



−1
0
0
2
0
−2
0
0
0
1




=


6
−1
−6
2
−6



(3.9)
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So we have the matrix representation of the restriction of T (again recycling and
redefining the matrix M)

M = M
T |GT (−1)

F,F =


0 −5 −1 2 6
0 −1 0 −1 −1
−2 4 1 −1 −6
0 0 0 1 2
−1 3 1 −2 −6


Theorem 3.9 says we can obtain a nilpotent matrix from this matrix represen-

tation by subtracting the eigenvalue from the diagonal elements, and then we can
apply Theorem 3.11 to M − (−1)I5. First check that (M − (−1)I5)

3
= O, so we

know that the index of M−(−1)I5 as a nilpotent matrix, and that therefore λ = −1
is an eigenvalue of T with index 3, ιT (−1) = 3. To determine a basis of C5 that
converts M − (−1)I5 to canonical form, we need the null spaces of the powers of
M − (−1)I5. Again, for convenience, set N = M − (−1)I5.

N
(
N1
)

=

〈


1
0
1
0
0

 ,

−3
1
0
−2
2



〉

N
(
N2
)

=

〈


3
1
0
0
0

 ,


1
0
1
0
0

 ,


0
0
0
1
0

 ,

−3
0
0
0
1



〉

N
(
N3
)

=

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

= C5

Then we choose a vector from N
(
N3
)

that is not an element of N
(
N2
)
. The sum

of the four basis vectors for N
(
N2
)

sum to a vector with all five entries equal to 1.

We will adjust with the first entry to create a vector not in N
(
N2
)
,

z3,1 =


0
1
1
1
1


where we are employing the notation in Theorem 3.11. The next step is to multiply
this vector by N to get a portion of the basis for N

(
N2
)
,

z2,1 = Nz3,1 =


1 −5 −1 2 6
0 0 0 −1 −1
−2 4 2 −1 −6
0 0 0 2 2
−1 3 1 −2 −5




0
1
1
1
1

 =


2
−2
−1
4
−3


We have a basis for the two-dimensional subspace N

(
N1
)

and we can add to

that the vector z2,1 and we have three of four basis vectors for N
(
N2
)
. These three
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vectors span the subspace we call Q2. We need a fourth vector outside of Q2 to
complete a basis of the four-dimensional subspace N

(
N2
)
. Check that the vector

z2,2 =


3
1
3
1
1


is an element of N

(
N2
)

that lies outside of the subspace Q2. This vector was
constructed by getting a nice basis for Q2 and forming a linear combination of this
basis that specifies three of the five entries of the result. Of the remaining two
entries, one was changed to move the vector outside of Q2 and this was followed by
a change to the remaining entry to place the vector into N

(
N2
)
. The vector z2,2 is

the lone basis vector for the subspace we call R2.

The remaining two basis vectors are easy to come by. They are the result of
applying N to each of the two most recently determined basis vectors,

z1,1 = Nz2,1 =


3
−1
0
2
−2

 z1,2 = Nz2,2 =


3
−2
−3
4
−4


Now we reorder these basis vectors, to arrive at the basis

C = {z1,1, z2,1, z3,1, z1,2, z2,2} =




3
−1
0
2
−2

 ,


2
−2
−1
4
−3

 ,


0
1
1
1
1

 ,


3
−2
−3
4
−4

 ,


3
1
3
1
1




A matrix representation of N relative to C is
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 =

[
J3 (0) O
O J2 (0)

]

To obtain a matrix representation of M , we add back in the matrix (−1)I5, placing
the eigenvalue back along the diagonal, and slightly modifying the Jordan blocks,

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 0 0
0 0 0 −1 1
0 0 0 0 −1

 =

[
J3 (−1) O
O J2 (−1)

]

The basis C yields a pleasant matrix representation for the restriction of the linear
transformation T − (−1)I to the generalized eigenspace GT (−1). However, we must
remember that these vectors in C5 are representations of vectors in C10 relative to
the basis F . Each needs to be “un-coordinatized” before joining our final basis.
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Here we go,

v6 = ρ−1F




3
−1
0
2
−2


 = 3



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ 0



1
0
0
−1
0
2
1
0
0
0


+ 2



−1
−1
0
0
0
−1
0
1
0
0


+ (−2)



−1
0
0
2
0
−2
0
0
0
1


=



−2
−1
3
−3
−1
2
0
2
0
−2



v7 = ρ−1F




2
−2
−1
4
−3


 = 2



−1
0
1
0
0
0
0
0
0
0


+ (−2)



−1
−1
0
−1
1
0
0
0
0
0


+ (−1)



1
0
0
−1
0
2
1
0
0
0


+ 4



−1
−1
0
0
0
−1
0
1
0
0


+ (−3)



−1
0
0
2
0
−2
0
0
0
1


=



−2
−2
2
−3
−2
0
−1
4
0
−3



v8 = ρ−1F




0
1
1
1
1


 = 0



−1
0
1
0
0
0
0
0
0
0


+ 1



−1
−1
0
−1
1
0
0
0
0
0


+ 1



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1


=



−2
−2
0
0
1
−1
1
1
0
1



v9 = ρ−1F




3
−2
−3
4
−4


 = 3



−1
0
1
0
0
0
0
0
0
0


+ (−2)



−1
−1
0
−1
1
0
0
0
0
0


+ (−3)



1
0
0
−1
0
2
1
0
0
0


+ 4



−1
−1
0
0
0
−1
0
1
0
0


+ (−4)



−1
0
0
2
0
−2
0
0
0
1


=



−4
−2
3
−3
−2
−2
−3
4
0
−4



v10 = ρ−1F




3
1
3
1
1


 = 3



−1
0
1
0
0
0
0
0
0
0


+ 1



−1
−1
0
−1
1
0
0
0
0
0


+ 3



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1


=



−3
−2
3
−2
1
3
3
1
0
1
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To summarize, we list the entire basis B = {v1, v2, v3, . . . , v10},

v1



2
1
−1
1
−1
2
1
0
1
0


v2



1
1
−2
2
0
−1
0
−1
0
1


v3



−1
0
2
−1
0
2
0
0
0
−1


v4



0
1
0
0
0
1
1
0
0
0


v5



1
2
−1
2
−1
2
1
−1
1
0



v6



−2
−1
3
−3
−1
2
0
2
0
−2


v7



−2
−2
2
−3
−2
0
−1
4
0
−3


v8



−2
−2
0
0
1
−1
1
1
0
1


v9



−4
−2
3
−3
−2
−2
−3
4
0
−4


v10



−3
−2
3
−2
1
3
3
1
0
1


The resulting matrix representation is

MT
B,B =



2 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 −1


If you are not inclined to check all of these computations, here are a few that

should convince you of the amazing properties of the basis B. Compute the matrix-
vector products Avi, 1 ≤ i ≤ 10. In each case the result will be a vector of the form
λvi + δvi−1, where λ is one of the eigenvalues (you should be able to predict ahead
of time which one) and δ ∈ {0, 1}.

Alternatively, if we can write inputs to the linear transformation T as linear
combinations of the vectors in B, then the “action” of T is reduced to a matrix-
vector product with the exceedingly simple matrix that is the Jordan canonical
form. Wow!



Chapter 4

Applications

4.1 Least Squares

Solving a linear system of equations is a fundamental use of the tools of linear
algebra. You know from introductory linear algebra that a linear system may have
no solution. In an applied situation there could be many reasons for this, and it
begs the question: what to do next?

We often construct mathematical models of practical situations, frequently in an
effort to measure various parameters of the model. Suppose we think that interest
rates R, as measured by the rate on one-year government bonds, are a linear function
of construction activity C, as measured by the number of permits issued for new
construction in the last 30 days. So the “hotter” the construction market, the
greater the demand for loans, so the cost of money (the interest rate) is greater.
With a good model, we might be able to predict interest rates by examining public
records for changes in the number of construction permits issued.

So we have a mathematical model

I = aR+ b

where we do not know a or b, the parameters of the model. But we would like
to know the values of these parameters. Or at least have good estimates, since
we understand that our model is an extremely simple representation of a much
more complicated situation. So we collect data by obtaining monthly records of
the interest rate and construction permits for the past sixty years. Now we have
720 pairs of permits issued and interest rates. We can substitute each pair into our
model and we get a linear equation in the parameters a and b. Two such equations
would be likely to have a unique solution, however if we consider all 720 equations
there is unlikely to be a solution. Why do we say that? Imagine the linear system
we would obtain from all these equations. The 720× 2 coefficient matrix will have
the values of C in the first column, and the second column will be all 1’s. The
vector of constants will be the values of R. If you form the augmented matrix of
this system and row-reduce, you will be virtually guaranteed to get a pivot column
in the third column and thus have no solution (Theorem RCLS).

The lack of a solution for our model can be expressed more clearly by saying that
vector of constants (the values of R) is not in the column space of the coefficient
matrix. Or the vector of C values is not a linear combination of the vector ofR values
and the vector of all ones. If it were, then the scalars in the linear combination would
be our solution for a and b. We will temporarily leave our economic forecasting
example to be more general, but we will return to the example soon.

95
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Consider the general problem of solving Ax = b when there is no solution. We
desire an x so that Ax equals b, but we will settle for an x so that Ax is very
close to b. What do we mean by close? One measure would be that we want the
difference Ax−b to be a short vector, as short as possible. In other words we want
to minimize the norm, ‖Ax− b‖. We will return to this minimization idea shortly,
but let’s ask informally what direction this short vector might have?

We have a subspace, the column space of A, represented by all possibilities
for Ax as we course over all values of x. We have a vector b that is not in the
subspace. Which element in the subspace is closest to b? Consider the situation in
two dimensions, where the subspace is a line through the origin, and the point lies
off the line. From the point off the line, which of the infinitely many points on the
line is closest, and what direction would you take to get there? In three dimensions,
consider a subspace that is a plane containing the origin, and the point lies off the
plane. From the point off the plane, which of the infinitely many points on the
plane is closest, and what direction would you take to get there? You should have
answered “in a perpendicular direction” and “in the direction of the normal vector
to the plane”. Move orthogonally to the subspace. More exactly, in the direction
of an element of the orthogonal complement of the subspace.

More carefully, Ax− b ∈ (C(A))
⊥

= N (A∗), so

0 = A∗ (Ax− b) = A∗Ax−A∗b ⇒ A∗Ax = A∗b.

This linear system is called the normal equations, due to the role of orthogo-
nality in its derivation. Several good things have happened. Primarily, A∗A is a
square matrix, is positive semi-definite, and if A has full column rank, then A∗A is
nonsingular. With a nonsingular coefficient matrix, we have the unique solution

x = (A∗A)
−1
A∗b.

We consider two very simple examples of using the normal equations, in cases
where our geometric intuition is useful.

Example 28. Consider the extremely trivial system of equations in one variable,
Ax = b with

A =

[
1
2

]
x =

[
x1
]

b =

[
5
15

]
Quite clearly this system has no solution. Forming the normal equations we get the
silly system [

5
] [
x1
]

=
[
35
]

which has the unique solution x1 = 7. What is more interesting is that

A
[
7
]

=

[
7
14

]
.

This is a vector in C(A) and the difference

r =

[
5
15

]
−
[

7
14

]
=

[
−2
1

]
is orthogonal to the columns of A, in other words r is in the orthogonal complement
of the column space of A. Geometrically, the point (5, 15) is not on the line y = 2x,
but (7, 14) is. The line has slope 2, while the line segment joining (5, 15) to (7, 14)
has slope − 1

2 , making it perpendicular to the line. So (7, 14) is the point on the
line closest to (5, 15) and leads to the solution x1 = 7 of the resulting system.
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Let’s do it again, staying simple, but not trivially so.

Example 29. Consider the simple system of equations in two variables, Ax = b
with

A =

1 −1
2 3
3 0

 x =

[
x1
x2

]
b =

 1
5
−2


If you try to solve this system, say by row-reducing an augmented matrix, you will
discover that there is no solution. The vector b is not in the column space of A.
The normal equations give the system[

14 5
5 10

] [
x1
x2

]
=

[
5
14

]
which has the unique solution x1 = − 4

23 , x2 = 171
115 . What is more interesting is

that

A

[
− 4

23
171
115

]
=

− 191
115

473
115
− 12

23

 .
This is a vector in C(A) and the difference

r =

 1
5
−2

−
− 191

115
473
115
− 12

23

 =

 306
115
102
115
− 34

23


is orthogonal to both of the columns of A, in other words r is in the orthogonal
complement of the column space of A. Geometrically, the point (1, 5,−2) is not on
the plane spanned by the columns of A, which has equation 9x+ 3y − 5z = 0, but
(− 191

115 ,
473
115 , −

12
23 ) is on the plane. The plane has a normal vector 9~i+ 3~j−5~k, while

the vector joining (1, 5,−2) to (− 191
115 ,

473
115 , −

12
23 ) is 306

115
~i + 102

115
~j − 34

23
~k, which is a

scalar multiple of the normal vector to the plane. So (− 191
115 ,

473
115 , −

12
23 ) is the point

on the plane closest to (1, 5,−2) and leads to the solution x1 = − 4
23 , x2 = 171

115 of
the resulting system.

What does a solution to the normal equations look like for our economic fore-
casting model? As discussed above A is a 720 × 2 matrix, where the first column
has the numbers of construction permits, ci for 1 ≤ i ≤ 720, and the second column
is all ones. The vector b contains the 720 values of the interest rate, ri, 1 ≤ i ≤ 720.
So

A∗A =

[∑
c2i

∑
ci∑

ci 720

]
A∗b =

[∑
ciri∑
ri

]
Then, [

a
b

]
= x = (A∗A)

−1
A∗b

=

[∑
c2i

∑
ci∑

ci 720

]−1 [∑
ciri∑
ri

]
=

1

720
∑
c2i − (

∑
ci)

2

[
720 −

∑
ci

−
∑
ci

∑
c2i

] [∑
ciri∑
ri

]
=

1

720
∑
c2i − (

∑
ci)

2

[
720

∑
ciri −

∑
ci
∑
ri

−
∑
ci
∑
ciri +

∑
c2i
∑
ri

]
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The expressions above can be cleaned up some, but the point is to see that we have
an expression for each of a and b, that depends soley on the 720 pairs of data points
(ci, ri), 1 ≤ i ≤ 720. These expressions may look familiar as the most basic case
of linear regression. Exercise 21 asks you to derive these expressions, and in the
more typical order. With estimates in hand, you can now consult the number of
construction permits issued and form a prediction of interest rates.

Exercise 21. Suppose we have n pairs of a dependent variable y that varies linearly
according to the independent variable x, (xi, yi), 1 ≤ i ≤ n. Model the data by
the linear equation y = a+ bx. Solve the normal equations to find expressions that
estimate the parameters a and b.

Exercise 22. Find the least-squares estimate obtained from data modeled by the
linear equation y = bx (a situation where we know there is no y-intercept).

Exercise 23. Suppose you have data modeled by a single quantity, z, that depends
on two independent variables, x and y, linearly according to the model z = a+ bx+
cy. So your data points are triples (xi, yi, zi), 1 ≤ i ≤ n. Can you solve the
normal equations to obtain expressions estimating a, b, c? This might not be a
very instructive exercise, but perhaps determine A∗A and A∗b before letting the
matrix inverse dissuade you. What does the geometric picture of the data and your
resulting estimates look like?

So far we have not stated any theorems, to say nothing of proving anything.
Moving in an orthogonal direction feels like a good idea, but is it really best? Here
is a theorem that suggests it is best according to one natural criteria.

Theorem 4.1. Suppose that A is an m × n matrix and b ∈ Cm. Then r (x) =
‖Ax− b‖ is minimized by a solution, x̂, to the normal equations, A∗Ax = A∗b.

Proof. For any vector x we can write

Ax− b = Ax−Ax̂ +Ax̂− b

= A (x− x̂) + (Ax̂− b)

Clearly the first term is a vector in the column space of A. The second vector,
by virtue of x̂ being a solution to the normal equations, is an element of N (A∗),
the orthogonal complement of the column space (Theorem 〈〈result on orthogonal
complement of colum space〉〉). So this is the promised decomposition of Ax − b
into the element of a subspace (the column space of A here) and the orthogonal
complement of the subspace. Since these two vectors are orthogonal, we can ap-
ply the generalized version of the Pythagorean Theorem (〈〈Pythagorean theorem,
perhaps into FCLA〉〉)

‖Ax− b‖2 = ‖A (x− x̂) + (Ax̂− b)‖2

= ‖A (x− x̂)‖2 + ‖(Ax̂− b)‖2

≥ ‖(Ax̂− b)‖2

This inequality establishes that x̂ minimizes r (x).

There are other measures of distance than the norm (we are using what would be
called the 2-norm, in order to differentiate it from other norms). But “Euclidean
distance”, as we have used here, is often the most tractable and the results are
often the most useful. In statistics, it is assumed that deviations in data, deviations
from what the model would predict, are due to quantities that vary according
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to probability distributions. With this assumption, estimators, such as our least-
squares estimates, become complicated functions of these random quantities. With
the 2-norm, and reasonable assumptions about the probability distributions for
the data, the resulting least-squares estimators have probability distributions that
are well-understood, thus making it possible to understand their properties and
behavior.

4.1.1 Computing Least-Squares Solutions

In Exercise 23 we suggest formulating general expressions for least-squares estimates
of three parameters of a model. This begins to get a bit absurd when you invert a
matrix larger than size 2. Instead it makes sense to formulate from the data the ma-
trix A∗A and the vector A∗b, and then proceed to a numerical solution. As A∗A is
a Hermitian positive definite matrix (〈〈theorem/lemma on positive definite〉〉, it can
be decomposed into a Cholesky factorization twice as fast as we can decompose an
arbitrary matrix into an LU factorization 〈〈cost to form Cholesky〉〉. The Cholesky
factorization allows a round of forward-solving followed by a round of back-solving
to find a solution to the normal equations.

But it gets better. Suppose A has rank n and we have a thin QR decomposition
of A, A = QR where Q has orthogonal columns and R is upper triangular with
positive diagonal entries. Notice in particular that R is invertible. Then

Q∗b = (R∗)
−1
R∗Q∗b

= (R∗)
−1
A∗b

= (R∗)
−1
A∗Ax

= (R∗)
−1
R∗Q∗Ax

= Q∗QRx

= Rx

This system has an upper triangular coefficient matrix, so one round of back-solving
will provide a solution for x. And the product Q∗b will be reasonably well-behaved
due to the orthogonal columns of Q. Notice that in the case of a square matrix A,
the matrix Q will be invertible, and the same system that in general leads to the
least-squares solution will also provide the exact solution in this special case.

Exercise 24. Compute the least-squares solution to the system Ax = b. Compute
the residual vector associated with your solution.

A =

1 1
0 0
2 3

 b =

2
1
4


Solution. We compute the pieces of the normal equations

A∗A =

[
5 7
7 10

]
A∗b =

[
10
14

]
So the solution is

x =

[
5 7
7 10

]−1 [
10
14

]
=

[
10 −7
−7 5

] [
10
14

]
=

[
2
0

]
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The residual is the difference

Ax− b =

1 1
0 0
2 3

[2
0

]
−

2
1
4

 =

 0
−1
0


Notice that residual is indeed orthogonal to the column space of A.

4.2 Curve Fitting

4.2.1 Interpolating Polynomials

Given two points in the plane, there is a unique line through them. Given three
points in the plane, and not in a line, there is a unique parabola through them.
Given four points in the plane, there is a unique polynomial, of degree 3 or less,
passing through them. And so on. We can prove this result, and give a procedure
for finding the polynomial with the help of Vandermonde matrices (〈〈section on
vandermonde matrices〉〉).

Theorem 4.2. Suppose {(xi, yi) | 1 ≤ i ≤ n+ 1} is a set of n + 1 points in the
plane where the x-coordinates are all different. Then there is a unique polynomial
of degree n or less, p(x), such that p(xi) = yi, 1 ≤ i ≤ n+ 1.

Proof. Write p(x) = a0 + a1x + a2x
2 + · · · + anx

n. To meet the conclusion of the
theorem, we desire,

yi = p(xi) = a0 + a1xi + a2x
2
i + · · ·+ anx

n
i 1 ≤ i ≤ n+ 1

This is a system of n+ 1 linear equations in the n+ 1 variables a0, a1, a2, . . . , an.
The vector of constants in this system is the vector containing the y-coordinates
of the points. More importantly, the coefficient matrix is a Vandermonde ma-
trix (〈〈definition-vandermonde〉〉) built from the x-coordinates x1, x2, x3, . . . , xn+1.
Since we have required that these scalars all be different, 〈〈theorem-NVM〉〉 tells us
that the coefficient matrix is nonsingular and Theorem NMUS says the solution for
the coefficients of the polynomial exists, and the solution is unique. As a practical
matter, Theorem SNCM provides an expression for the solution.

Example 30. Suppose we have the following 5 points in the plane and we wish to
pass a degree 4 polynomial through them.

i 1 2 3 4 5
xi -3 -1 2 3 6
yi 276 16 31 144 2319

Table 4.1: Points on a polynomial

The required system of equations has a coefficient matrix that is the Vander-
monde matrix where row i is successive powers of xi

A =


1 −3 9 −27 81
1 −1 1 −1 1
1 2 4 8 16
1 3 9 27 81
1 6 36 216 1296
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Theorem NMUS provides a solution as
a0
a1
a2
a3
a4

 = A−1


276
16
31
144
2319



=


− 1

15
9
14

9
10 − 1

2
1
42

0 − 3
7

3
4 − 1

3
1
84

5
108 − 1

56 − 1
4

17
72 − 11

756
− 1

54
1
21 − 1

12
1
18 − 1

756
1

540 − 1
168

1
60 − 1

72
1

756




276
16
31
144
2319

 =


3
−4
5
−2
2


So the polynomial is p(x) = 3− 4x+ 5x2 − 2x3 + 2x4.

The unique polynomial passing through a set of points is known as the inter-
polating polynomial and it has many uses. Unfortunately, when confronted with
data from an experiment the situation may not be so simple or clear cut. Read
on.

4.2.2 Fitting Curves Through Data

To construct an interpolating polynomial, we presumed we wanted a curve passing
through a set of points exactly. Sometimes we have a similar, but distinctly different
situation. We have a set of data points xi, 1 ≤ i ≤ n, where the xi are m-tuples.
We have a model or a physical law which suggests that each m-tuple satisfies some
linear equation with k unknown parameters. We wish to estimate the parameters.
If we can formulate a linear system with the parameters as the variables, then we
can use a least-squares estimate (Section 4.1). We illustrate with two examples.

Example 31. Suppose we believe the twelve data points below are related by
a degree three polynomial, y = p(x) = a0 + a1x + a2x

2 + a3x
3. We have four

unknown parameters, the coefficients of the polynomial. For each point we can
create a 5 tuple, (1, xi, x

2
i , x

3
i , yi), with entries that are related by the linear equation

a0 + a1xi + a2x
2
i + a3x

3
i = yi. So we have 12 linear equations in 4 variables. The

coefficent matrix A has 12 rows and 4 columns, similar in spirit to a Vandemonde
matrix (Section ??), though not even square. The vector of constants is the 12
values of yi.

Here are the relevant pieces of the system, the normal equations, and the solu-
tion.

A =



1 0.142 0.020 0.003
1 0.646 0.417 0.269
1 0.954 0.909 0.867
1 2.958 8.751 25.886
1 2.975 8.851 26.332
1 3.167 10.032 31.775
1 3.413 11.649 39.757
1 4.302 18.504 79.595
1 5.552 30.830 171.180
1 6.576 43.247 284.403
1 7.958 63.325 503.917
1 8.028 64.444 517.341



b =



−10.867
10.120
8.172
11.693
18.931
16.215
3.863
−7.971
−24.108
−31.217

0.719
9.550
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xi yi

0.142 -10.867
0.645 10.120
0.953 8.1728
2.958 11.693
2.975 18.931
3.167 16.215
3.413 3.863
4.301 -7.971
5.552 -24.108
6.576 -31.217
7.957 0.719
8.027 9.550

Table 4.2: Points on a polynomial

A∗A =


12.000 46.671 260.978 1681.324
46.671 260.978 1681.324 11718.472
260.978 1681.324 11718.472 85542.108
1681.324 11718.472 85542.108 642050.755



A∗b =


5.102
−122.81
−1090.783
−6856.475

 x =


−17.726
47.157
−16.122

1.323


So the polynomial obtained from a least-squares fit is

p̂(x) = 1.323x3 − 16.122x2 + 47.157x− 17.726

With other models, it may be necessary to rearrange the equation to “linearize”
it. For example, if the relationship between x and y is exponential and is given by
y = aebx then applying the logarithm to both sides would yield log(y) = log(a)+bx.
Then by using pairs (xi, log(yi)), a least-squares solution would provide estimates
of log(a) and b, which could be easily converted to estimates of a and b.



Chapter 5

Topics

In this chapter we collect a variety of useful topics that are independent of much of
trhe other material, though not exclusively so.

5.1 Vandermonde Matrices

Alexandre-Théophile Vandermonde was a French mathematician in the 1700’s who
was among the first to write about basic properties of the determinant (such as the
effect of swapping two rows). However, the determinant that bears his name (??)
does not appear in any of his four published mathematical papers.

Definition 19. A square matrix of size n, A, is a Vandermonde matrix if there
are scalars, x1, x2, x3, . . . , xn such that [A]ij = xj−1i , 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Example 32. The matrix

A =


1 2 4 8
1 −3 9 −27
1 1 1 1
1 4 16 64


is a Vandermonde matrix since it meets the definition with x1 = 2, x2 = −3, x3 = 1,
x4 = 4.

Vandermonde matrices are not very interesting as numerical matrices, but in-
stead appear more often in proofs and applications where the scalars xi are carried
as symbols. Two such applications are in the sections on secret-sharing (〈〈section-
SAS〉〉) and curve-fitting (4.2). Principally, we would like to know when Vander-
monde matrices are nonsingular, and the most convenient way to check this is by
determining when the determinant is nonzero (Theorem SMZD). As a bonus, the
determinant of a Vandermonde matrix has an especially pleasing formula.

Theorem 5.1. Suppose that A is a Vandermonde matrix of size n built with the
scalars x1, x2, x3, . . . , xn. Then

det (A) =
∏

1≤i<j≤n

(xj − xi) .

Proof. The proof is by induction (Proof Technique I) on n, the size of the matrix.
An empty product for a 1× 1 matrix might make a good base case, but we’ll start
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at n = 2 instead. For a 2× 2 Vandermonde matrix, we have

det (A) =

∣∣∣∣1 x1
1 x2

∣∣∣∣ = x2 − x1 =
∏

1≤i<j≤2

(xj − xi)

For the induction step we will perform row operations on A to obtain the deter-
minant of A as a multiple of the determinant of an (n− 1)× (n− 1) Vandermonde
matrix. The notation in this theorem tends to obscure your intuition about the
changes effected by various row and column manipulations. Construct a 4× 4 Van-
dermonde matrix with four symbols as the scalars (x1, x2, x2, x4, or perhaps a, b,
c, d) and play along with the example as you study the proof.

First we convert most of the first column to zeros. Subtract row n from each of
the other n − 1 rows to form a matrix B. By Theorem DRCMA, B has the same
determinant as A. The entries of B, in the first n − 1 rows, i.e. for 1 ≤ i ≤ n − 1,
1 ≤ j ≤ n− 1, are

[B]ij = xj−1i − xj−1n = (xi − xn)

j−2∑
k=0

xj−2−ki xkn

As the elements of row i, 1 ≤ i ≤ n−1, have the common factor (xi − xn), we form
the new matrix C that differs from B by the removal of this factor from each of
the first n− 1 rows. This will change the determinant, as we will track carefully in
a moment. We also have a first column with zeros in each location, except row n,
so we can use it for a column expansion computation of the determinant. We now
know,

det (A) = det (B)

= (x1 − xn)(x2 − xn) · · · (xn−1 − xn) det (C)

= (x1 − xn)(x2 − xn) · · · (xn−1 − xn)(1)(−1)n+1 det (C (n− 1|1))

= (x1 − xn)(x2 − xn) · · · (xn−1 − xn)(−1)n−1 det (C (n− 1|1))

= (xn − x1)(xn − x2) · · · (xn − xn−1) det (C (n− 1|1))

For convenience, denote D = C (n− 1|1). Entries of this matrix are similar to those
of B, but the factors used to build C are gone, and since the first column is gone,
there is a slight re-indexing relative to the columns. For 1 ≤ i ≤ n−1, 1 ≤ j ≤ n−1,

[D]ij =

j−1∑
k=0

xj−1−ki xkn

We will perform many column operations on the matrix D, always of the type
where we multiply a column by a scalar and add the result to another column. As
such, Theorem DRCM insures that the determinant will remain constant. We will
work column by column, left to right, to convert D into a Vandermonde matrix with
scalars x1, x2, x3, . . . , xn−1. More precisely, we will build a sequence of matrices
D = D1, D2, . . . , Dn−1, where each is obtainable from the previous by a sequence of
determinant-preserving column operations and the first ` columns of D` are the first
` columns of a Vandermonde matrix with scalars x1, x2, x3, . . . , xn−1. We could
establish this claim by induction (Proof Technique I) on ` if we were to expand
the claim to specify the exact values of the final n − 1 − ` columns as well. Since
the claim is that matrices with certain properties exist, we will instead establish the
claim by constructing the desired matrices one-by-one procedurally. The extension
to an inductive proof should be clear, but not especially illuminating.
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Set D1 = D to begin, and note that the entries of the first column of D1 are,
for 1 ≤ i ≤ n− 1,

[D1]i1 =

1−1∑
k=0

x1−1−ki xkn = 1 = x1−1i

So the first column of D1 has the properties we desire. We will use this column
of all 1’s to remove the highest power of xn from each of the remaining columns
and so build D2. Precisely, perform the n − 2 column operations where column 1
is multiplied by xj−1n and subtracted from column j, for 2 ≤ j ≤ n − 1. Call the
result D2, and examine its entries in columns 2 through n− 1. For 1 ≤ i ≤ n− 1,
2 ≤ j ≤ n− 1,

[D2]ij = −xj−1n [D1]i1 + [D1]ij

= −xj−1n (1) +

j−1∑
k=0

xj−1−ki xkn

= −xj−1n + x
j−1−(j−1)
i xj−1n +

j−2∑
k=0

xj−1−ki xkn

=

j−2∑
k=0

xj−1−ki xkn

In particular, we examine column 2 of D2. For 1 ≤ i ≤ n− 1,

[D2]i2 =

2−2∑
k=0

x2−1−ki xkn = x1i = x2−1i

Now, form D3. Perform the n − 3 column operations where column 2 of D2 is
multiplied by xj−2n and subtracted from column j, for 3 ≤ j ≤ n− 1. The result is
D3, whose entries we now compute. For 1 ≤ i ≤ n− 1,

[D3]ij = −xj−2n [D2]i2 + [D2]ij

= −xj−2n x1i +

j−2∑
k=0

xj−1−ki xkn

= −xj−2n x1i + x
j−1−(j−2)
i xj−2n +

j−3∑
k=0

xj−1−ki xkn

=

j−3∑
k=0

xj−1−ki xkn

Specifically, we examine column 3 of D3. For 1 ≤ i ≤ n− 1,

[D3]i3 =

3−3∑
k=0

x3−1−ki xkn

= x2i = x3−1i

We could continue this procedure n−4 more times, eventually totaling 1
2

(
n2 − 3n+ 2

)
column operations, and arriving at Dn−1, the Vandermonde matrix of size n − 1
built from the scalars x1, x2, x3, . . . , xn−1. Informally, we chop off the last term
of every sum, until a single term is left in a column, and it is of the right form for
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the Vandermonde matrix. This desired column is then used in the next iteration
to chop off some more final terms for columns to the right. Now we can apply our
induction hypothesis to the determinant of Dn−1 and arrive at an expression for
detA,

det (A) = det (C)

=

n−1∏
k=1

(xn − xk) det (D)

=

n−1∏
k=1

(xn − xk) det (Dn−1)

=

n−1∏
k=1

(xn − xk)
∏

1≤i<j≤n−1

(xj − xi)

=
∏

1≤i<j≤n

(xj − xi)

which is the desired result.

Before we had 5.1 we could see that if two of the scalar values were equal,
then the Vandermonde matrix would have two equal rows and hence be singular
(Theorem DERC, Theorem SMZD). But with this expression for the determinant,
we can establish the converse.

Theorem 5.2. A Vandermonde matrix of size n with scalars x1, x2, x3, . . . , xn is
nonsingular if and only if the scalars are all different.

Proof. Let A denote the Vandermonde matrix with scalars x1, x2, x3, . . . , xn. By
Theorem SMZD, A is nonsingular if and only if the determinant of A is nonzero.
The determinant is given by 5.1, and this product is nonzero if and only if each
term of the product is nonzero. This condition translates to xi − xj 6= 0 whenever
i 6= j. In other words, the matrix is nonsingular if and only if the scalars are all
different.
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GNU Free Documentation
License

Version 1.3, 3 November 2008
Copyright c©2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE The purpose of this License is to make a manual, textbook,
or other functional and useful document “free” in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS This License applies to any
manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”.
You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to related matters) and contains
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nothing that could fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Docu-
ment is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats in-
clude PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Doc-
ument to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the Doc-
ument means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.
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2. VERBATIM COPYING You may copy and distribute the Document in any
medium, either commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY If you publish printed copies (or copies in
media that commonly have printed covers) of the Document, numbering more than
100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS You may copy and distribute a Modified Version of
the Document under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

2. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
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least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be in-
cluded in the Modified Version.

14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.



111

You may add a section Entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties —for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement of
any Modified Version.

5. COMBINING DOCUMENTS You may combine the Document with other
documents released under this License, under the terms defined in section 4 above for
modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedi-
cations”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS You may make a collection consist-
ing of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS A compilation of
the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggre-
gate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION Translation is considered a kind of modification, so you
may distribute translations of the Document under the terms of section 4. Re-
placing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION You may not copy, modify, sublicense, or distribute the
Document except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense, or distribute it is void, and will automatically terminate
your rights under this License.

However, if you cease all violation of this License, then your license from a partic-
ular copyright holder is reinstated (a) provisionally, unless and until the copyright
holder explicitly and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some reasonable means prior
to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated perma-
nently if the copyright holder notifies you of the violation by some reasonable means,
this is the first time you have received notice of violation of this License (for any
work) from that copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy of
some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foun-
dation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See Copyleft.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be used, that proxy’s public

http://www.gnu.org/copyleft/
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statement of acceptance of a version permanently authorizes you to choose that
version for the Document.

11. RELICENSING “Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that publishes copyrightable works and
also provides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A “Massive Multiauthor
Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a
principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part,
as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if
all works that were first published under this License somewhere other than this
MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no
cover texts or invariant sections, and (2) were thus incorporated prior to November
1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided the
MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents To use this
License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free
Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.
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