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Quaternion Algebra

• Definition: Let F be a field and A be a vector space over a
over F with an additional operation (∗) from A× A to A.
Then A is an algebra over F , if the following expressions hold
for any three elements x , y , z ∈ F , and any a, b ∈ F :

1. Right Distributivity: (x + y) ∗ z = x ∗ z + y ∗ z
2. Left Distributivity: x*(y+z) = (x * y) + (x * z)
3. Compatability with Scalers: (ax)*(by) = (ab)(x * y)

• Definition: A quaternion algebra is a 4-dimensional algebra
over a field F with a basis {1, i , j , k} such that

i2 = a, j2 = b, ij = −ji = k

for some a, b ∈ F x . F x is the set of units in F .

• For q ∈
(
a,b
F

)
, q = α + βi + γj + δk , where α, β, γ, δ ∈ F
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Existence of Quaternion Algebras

Theorem 1: Let a, b ∈ F x , then
(
a,b
F

)
exists.

Proof .
Grab α, β in an algebra E of F such that α2 = a and β2 = −b. Let

i =

(
α 0
0 −α

)
, j =

(
0 β
−β 0

)
Then

i2 = a, j2 = b, ij =

(
0 αβ
αβ 0

)
= −ji .

Since {I2, i , j , ij} is linearly independent over E it is also linearly
independent over F . Therefore F -span of {I2, i , j , ij} is a

4-dimensional algebra Q over F , and Q =
(
a,b
F

)
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Associated Quantities of Quaternion Algebras

Pure Quaternions: Let {1, i , j , k} be a standard basis for a
quaternion algebra Q. The elements in the subspace Q0 spanned
by i , j and k are called the pure quaternions of Q.
Preposition 1: A nonzero element x ∈ Q is a pure quaternion if
and only if x 6∈ F and x2 ∈ F .
Proof .
(⇒)

Let {1, i , j , k} be a standard basis for Q =
(
a,b
F

)
. Let x be a

nonzero element in Q. We can write x = a0 + a1i + a2j + a3k with
al ∈ F for all l . Then

x2 = (a2
0 + aa2

1 + ba2
2 − (aba2

3)) + 2a0(a1i + a2j + a3k)

If x is in the F -space spanned by i , j and k , then a0 = 0 and hence
x 6∈ F but x2 ∈ F .
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Quantities Cont.

(⇐)
Suppose that x 6∈ F and x2 ∈ F . Then one of a1, a2, and a3 is
nonzero, and a0 = 0. Thus x is a pure quaternion.
This leads to the idea of a conjugate in Q.
Quaternion Conjugate: q̄ = a−Q0 = a− (bi + cj + dk)
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Norm of Quaternion Algebra

Norm: N : α,βF → F , such that

N(q) = q̄q = qq̄ = a2 + (−αb2) + (βc2) + αβd2

Norm form: Coefficients of N(q) expressed < 1, α, β, αβ >
It should be clear that whenever N(q) 6= 0 the element q is
invertible, q−1 = 1

N(q) q̄. Indeed q is invertible if and only if

N(q) 6= 0.
This leads us to our second theorem of Quaternion Algebras.
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Quaternion Division Algebras

Theorem 2: The quaternion algebra a,b
F is a division algebra if and

only if N(q) = 0 implies q = 0.
Proof .
(⇒)

Let Q =
(
a,b
F

)
be a division algebra.

Grab q ∈ Q if N(q) = qq̄ = 0, then q = 0, or q̄ = 0, either of
which means q = 0.
(⇐)
If N(q) 6= 0, q−1 = q̄

N(q) . Then N(q) = 0→ q = 0, and any

non-zero element in
(
a,b
F

)
is invertible. Thus

(
a,b
F

)
is a division

algebra.
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Isomorphisms of Quaternion Algebras

The Norm Form of a quaternion algebra also provides a way to test
whether two quaternion algebras are isomorphic.
Two forms, Q1 : V1 → F and Q2 : V2 → F are isometric if their
exists a vector space isomorphism φ : V1 → V2, such that
Q2(φ(x)) = Q1(x) for all x ∈ V1. [4]

Theorem 3: Given 2 quaternion algebras Q =
(
a,b
F

)
, and

Q′ =
(
a′,b′

F

)
; the following are equivalent:

1. Q and Q′ are isomorphic.

2. The norm forms of Q and Q′ are isometric.

3. The norm forms of Q0 and Q′0 are isometric.
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Isomorphisms Cont.

Proof .
(1⇒ 2) Since φ is an F -algebra isomorphism, by Proposition 1 we
have

v ∈ Q0 ⇔ v 6∈ F , v2 ∈ F

⇔ φ(v) 6∈ F , φ(v)2 ∈ F

⇔ φ(v) ∈ Q′0

(1)

If x = α + x0 where α ∈ F and x0 ∈ Q0, then x̄ = αx0, and hence
φ(x) = α + φ(x0) and φ(x) = αφ(x0).
Since φ(x0) ∈ Q′0, we have ¯φ(x) = φ(x̄). Thus

N(φ(x)) = φ(x) ¯φ(x) = φ(x)φ(x̄) = φ(N(x)) = N(x)

so φ is an isometry from Q to Q′0.
The proof of the remaining 2 equivalences can be found in [10].
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Characteristics of Quaternion Algebras

Theorem 4: A quaternion algebra over F is central simple, that is,
its center is F and it does not have any nonzero proper two-sided
ideal.
Proof .
Let Q be a quaternion algebra over F , and {1, i , j , k} be a standard
basis of Q over F . Consider an element x = α + βi + γj + δk in
the center of Q, where α, β, γ, δ ∈ F . Then

xQ = xQ, for all x ∈ Q
⇒ 0 = jx − xj

= j(α + βi + γj + δk)− (α + βi + γj + δk)j

= 2k(β + δj).

(2)

Since k is invertible in Q, it must be that β = δ = 0. Similarly, it
can be shown γ = 0. Hence x ∈ F .
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Characteristics Cont.

Proof cont.
We need to show that any nonzero two-sided ideal I is Q itself. It
is sufficient to show that I contains a nonzero element of F . Take
a nonzero element y = a + bi + cj + dk ∈ I , where a, b, c , d ∈ F .
We may assume that one of b, c and d is nonzero.
By replacing y by one of iy , jy and ky , we may further assume that
I 6= 0. Since yj − jy ∈ I and 2k is invertible in Q, we see that
b + dj , and hence bi + dk, are in I . This shows that a + cj is in a.
Similarly, a + bi and a + dk are also in I . Therefore,

−2a = y(a + bi)(a + cj)(a + dk) 6= 0 is from F and resides in I

Thus I = Q
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Polynomials in Q

The Fundamental Theorem of Algebra states: Any polynomial of
degree n with coefficients in any field F can have at most n roots
in F . For polynomials with coefficients from Q the situation is
somewhat different.
Due to the lack of commutativity in Q polynomials become
commensurately more complicated, in just degree two we may have
terms like ax2, xax , x2a, axbx all of which are distinct in Q.
However, there is a Fundamental Theorem of Algebra for Q, which
says that if the polynomial has only one term of highest degree
then there exists a root in Q.
This can be pushed further for division algebras using the
Wedderburn Factorization Theorem for polynomials over division
algebras.
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Wedderburn Factorization Theorem

Theorem 5: Let D be a division ring with center F and let p(x)
be an irreducible monic polynomial of degree n with coefficients
from the field F. If there exists d ∈ D such that p(d) = 0 then we
can write

p(x) = (t − d1)(t − d2)(t − d3)(t − dn)

and each di is conjugate to d1; there exist nonzero elements
si ∈ D, such that di = sids

−1
i for 1 ≤ i ≤ n.

This theorem says that if the polynomial has one root in D then it
factorizes completely as a product of linear factors over D!
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Extensions of Quaternion Algebras

It is possible to describe an algebra as an extension of a smaller
algebra.
The process used for building quaternion algebras is known as
Cayley-Dickson Doubling. It is a way of extending an algebra A to
a new algebra, KD(A), and preserving all operations (addition,
scalar multiplication, element multiplication and the norm), such
that A is a subalgebra of KD(A). If A has a unity element Θ then
so does KD(A) and the extension can be expressed;

KD(A,Θ) = A⊕ Aµ

where µ is a root of unity.
Any extension is a 2 degree extension over the preceding algebra.
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Frobenius

The mathematician Frobenius took this idea of subalgebras and
found an incredible result about Real Division Algebras.
Theorem 6: Suppose A is an algebra with unit over the field R of
reals. Assume that the algebra A is without divisors of zero. If
each element x ∈ A is algebraic with respect to the field R then
the algebra is isomorphic with one of the classical division algebras
R,C, or Q.
We have just classified all real division algebras!
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Applications of Quaternion Algebras
The are a myriad of uses for quaternion algebras including:
• Group Theory: The quaternions form an order 8 subgroup
{±1,±i ,±j ,±k}.

• Number Theory: The mathematician Hurwitz introduced the
ring of integral quaternions. This construction was used to
prove Lagrange’s theorem, that every positive integer is a sum
of at most four squares.

• Rotations: Quaternions can describe rotations in
3-dimensional space. Traditionally rotations are considered
compositions of rotations around the Cartesian coordinate
axes by angles ψ, φ and θ. However, Euler proved that a
general rotation of a rigid object can be described as a single
rotation about some fixed vector. Given v = [l ,m, n] over R3

then a rotation by an angle θ about v is given by

Lq(v) = qvq∗ where q = [cos
θ

2
, l sin

θ

2
,m sin

θ

2
, n sin

θ

2
]
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Applications of Quaternion Algebras Cont.

• Computer Graphics: The quaternions on the other hand
generate a more realistic animation. A technique which is
currently gaining favor is called spherical linear interpolation
(SLERP) and uses the fact that the set of all unit quaternions
form a unit sphere. By representing the quaternions of key
frames as points on the unit sphere, a SLERP defines the
intermediate sequence of rotations as a path along the great
circle between the two points on the sphere.

• Physics: The quaternions have found use in a wide variety of
research.

• They can be used to express the Lorentz Transform making
them useful for work on Special and General Relativity.

• Their properties as generators of rotation make them incredibly
useful for Newtonian Mechanics, scattering experiments such
as crystallography, and quantum mechanics (particle spin is an
emergent property of the mathematics).
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