Applications of Quaternion Algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quaternion Algebras 0 00000000000 0

### Quaternion Algebras Properties and Applications

#### Rob Eimerl

<sup>1</sup>Department of Mathematics University of Puget Sound

May 5th, 2015



- Definition: Let F be a field and A be a vector space over a over F with an additional operation (\*) from A × A to A. Then A is an algebra over F, if the following expressions hold for any three elements x, y, z ∈ F, and any a, b ∈ F:
  - 1. Right Distributivity: (x + y) \* z = x \* z + y \* z
  - 2. Left Distributivity:  $x^*(y+z) = (x * y) + (x * z)$
  - 3. Compatability with Scalers:  $(ax)^*(by) = (ab)(x * y)$
- **Definition:** A *quaternion algebra* is a 4-dimensional algebra over a field *F* with a basis {1, *i*, *j*, *k*} such that

$$i^2 = a, j^2 = b, ij = -ji = k$$

for some  $a, b \in F^{\times}$ .  $F^{\times}$  is the set of units in F.

• For  $q \in \left(\frac{a,b}{F}\right)$ ,  $q = \alpha + \beta i + \gamma j + \delta k$ , where  $\alpha, \beta, \gamma, \delta \in F$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

### Existence of Quaternion Algebras

**Theorem 1:** Let  $a, b \in F^x$ , then  $\left(\frac{a,b}{F}\right)$  exists. *Proof*.

Grab  $\alpha, \beta$  in an algebra E of F such that  $\alpha^2 = a$  and  $\beta^2 = -b$ . Let

$$i = \left(\begin{array}{cc} \alpha & 0\\ 0 & -\alpha \end{array}\right), \ j = \left(\begin{array}{cc} 0 & \beta\\ -\beta & 0 \end{array}\right)$$

Then

$$i^2 = a, j^2 = b, ij = \left( egin{array}{cc} 0 & lpha eta \ lpha eta & 0 \end{array} 
ight) = -ji.$$

Since  $\{I_2, i, j, ij\}$  is linearly independent over E it is also linearly independent over F. Therefore F-span of  $\{I_2, i, j, ij\}$  is a 4-dimensional algebra  $\mathbb{Q}$  over F, and  $\mathbb{Q} = \left(\frac{a,b}{F}\right)$ 

# Associated Quantities of Quaternion Algebras

**Pure Quaternions:** Let  $\{1, i, j, k\}$  be a standard basis for a quaternion algebra  $\mathbb{Q}$ . The elements in the subspace  $\mathbb{Q}_0$  spanned by *i*, *j* and *k* are called the pure quaternions of  $\mathbb{Q}$ . **Preposition 1:** A nonzero element  $x \in \mathbb{Q}$  is a pure guaternion if and only if  $x \notin F$  and  $x^2 \in F$ . Proof.  $(\Rightarrow)$ Let  $\{1, i, j, k\}$  be a standard basis for  $\mathbb{Q} = \left(\frac{a, b}{F}\right)$ . Let x be a nonzero element in  $\mathbb{Q}$ . We can write  $x = a_0 + a_1 i + a_2 i + a_3 k$  with  $a_l \in F$  for all *l*. Then

$$x^{2} = (a_{0}^{2} + aa_{1}^{2} + ba_{2}^{2} - (aba_{3}^{2})) + 2a_{0}(a_{1}i + a_{2}j + a_{3}k)$$

If x is in the F-space spanned by i, j and k, then  $a_0 = 0$  and hence  $x \notin F$  but  $x^2 \in F$ .

### Quantities Cont.

( $\Leftarrow$ ) Suppose that  $x \notin F$  and  $x^2 \in F$ . Then one of  $a_1, a_2$ , and  $a_3$  is nonzero, and  $a_0 = 0$ . Thus x is a pure quaternion. This leads to the idea of a conjugate in  $\mathbb{Q}$ . Quaternion Conjugate:  $\bar{q} = a - \mathbb{Q}_0 = a - (bi + cj + dk)$ 

## Norm of Quaternion Algebra

**Norm:**  $N: \frac{\alpha,\beta}{F} \to F$ , such that

$$N(q) = \bar{q}q = q\bar{q} = a^2 + (-\alpha b^2) + (\beta c^2) + \alpha \beta d^2$$

**Norm form:** Coefficients of N(q) expressed  $< 1, \alpha, \beta, \alpha\beta >$ It should be clear that whenever  $N(q) \neq 0$  the element q is invertible,  $q^{-1} = \frac{1}{N(q)}\bar{q}$ . Indeed q is invertible if and only if  $N(q) \neq 0$ . This leads us to our second theorem of Quaternion Algebras.

- ロ ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4

### Quaternion Division Algebras

**Theorem 2:** The quaternion algebra  $\frac{a,b}{E}$  is a division algebra if and only if N(q) = 0 implies q = 0. Proof.  $(\Rightarrow)$ Let  $\mathbb{Q} = \left(\frac{a,b}{F}\right)$  be a division algebra. Grab  $q \in \mathbb{Q}$  if  $N(q) = q\bar{q} = 0$ , then q = 0, or  $\bar{q} = 0$ , either of which means q = 0. (⇔) If  $N(q) \neq 0$ ,  $q^{-1} = \frac{\bar{q}}{N(q)}$ . Then  $N(q) = 0 \rightarrow q = 0$ , and any non-zero element in  $\left(\frac{a,b}{F}\right)$  is invertible. Thus  $\left(\frac{a,b}{F}\right)$  is a division algebra.

## Isomorphisms of Quaternion Algebras

The Norm Form of a quaternion algebra also provides a way to test whether two quaternion algebras are isomorphic. Two forms,  $Q_1 : V_1 \to F$  and  $Q_2 : V_2 \to F$  are isometric if their exists a vector space isomorphism  $\phi : V_1 \to V_2$ , such that  $Q_2(\phi(x)) = Q_1(x)$  for all  $x \in V_1$ . [4] **Theorem 3:** Given 2 quaternion algebras  $\mathbb{Q} = \left(\frac{a,b}{F}\right)$ , and  $\mathbb{Q}' = \left(\frac{a',b'}{F}\right)$ ; the following are equivalent: 1.  $\mathbb{Q}$  and  $\mathbb{Q}'$  are isomorphic.

- 2. The norm forms of  $\mathbb{Q}$  and  $\mathbb{Q}'$  are isometric.
- 3. The norm forms of  $\mathbb{Q}_0$  and  $\mathbb{Q}'_0$  are isometric.

### Isomorphisms Cont.

*Proof*.  $(1 \Rightarrow 2)$  Since  $\phi$  is an *F*-algebra isomorphism, by Proposition 1 we have

$$v \in \mathbb{Q}_{\nvdash} \Leftrightarrow v \notin F, v^{2} \in F$$
  

$$\Leftrightarrow \phi(v) \notin F, \phi(v)^{2} \in F$$
  

$$\Leftrightarrow \phi(v) \in \mathbb{Q}'_{0}$$
(1)

If  $x = \alpha + x_0$  where  $\alpha \in F$  and  $x_0 \in \mathbb{Q}_0$ , then  $\bar{x} = \alpha x_0$ , and hence  $\phi(x) = \alpha + \phi(x_0)$  and  $\phi(x) = \alpha \phi(x_0)$ . Since  $\phi(x_0) \in \mathbb{Q}'_0$ , we have  $\phi(\bar{x}) = \phi(\bar{x})$ . Thus

$$N(\phi(x)) = \phi(x)\phi(\bar{x}) = \phi(x)\phi(\bar{x}) = \phi(N(x)) = N(x)$$

so  $\phi$  is an isometry from  $\mathbb{Q}$  to  $\mathbb{Q}'_0$ . The proof of the remaining 2 equivalences can be found in [10].

## Characteristics of Quaternion Algebras

**Theorem 4:** A quaternion algebra over F is central simple, that is, its center is F and it does not have any nonzero proper two-sided ideal.

Proof.

Let  $\mathbb{Q}$  be a quaternion algebra over F, and  $\{1, i, j, k\}$  be a standard basis of  $\mathbb{Q}$  over F. Consider an element  $x = \alpha + \beta i + \gamma j + \delta k$  in the center of  $\mathbb{Q}$ , where  $\alpha, \beta, \gamma, \delta \in F$ . Then

$$x\mathbb{Q} = x\mathbb{Q}, \text{ for all } x \in \mathbb{Q}$$
  

$$\Rightarrow 0 = jx - xj$$
  

$$= j(\alpha + \beta i + \gamma j + \delta k) - (\alpha + \beta i + \gamma j + \delta k)j$$
  

$$= 2k(\beta + \delta j).$$
(2)

Since k is invertible in  $\mathbb{Q}$ , it must be that  $\beta = \delta = 0$ . Similarly, it can be shown  $\gamma = 0$ . Hence  $x \in F$ .

### Characteristics Cont.

#### Proof cont.

We need to show that any nonzero two-sided ideal I is  $\mathbb{Q}$  itself. It is sufficient to show that I contains a nonzero element of F. Take a nonzero element  $y = a + bi + cj + dk \in I$ , where  $a, b, c, d \in F$ . We may assume that one of b, c and d is nonzero. By replacing y by one of iy, jy and ky, we may further assume that  $I \neq 0$ . Since  $yj - jy \in I$  and 2k is invertible in  $\mathbb{Q}$ , we see that b + dj, and hence bi + dk, are in I. This shows that a + cj is in a. Similarly, a + bi and a + dk are also in I. Therefore,

$$-2a = y(a + bi)(a + cj)(a + dk) \neq 0$$
 is from F and resides in I

Thus  $I = \mathbb{Q}$ 

# Polynomials in ${\mathbb Q}$

The Fundamental Theorem of Algebra states: Any polynomial of degree n with coefficients in any field F can have at most n roots in F. For polynomials with coefficients from  $\mathbb{Q}$  the situation is somewhat different.

Due to the lack of commutativity in  $\mathbb{Q}$  polynomials become commensurately more complicated, in just degree two we may have terms like  $ax^2$ , xax,  $x^2a$ , axbx all of which are distinct in  $\mathbb{Q}$ . However, there is a Fundamental Theorem of Algebra for  $\mathbb{Q}$ , which says that if the polynomial has only one term of highest degree then there exists a root in  $\mathbb{Q}$ .

This can be pushed further for division algebras using the Wedderburn Factorization Theorem for polynomials over division algebras.

### Wedderburn Factorization Theorem

**Theorem 5:** Let *D* be a division ring with center *F* and let p(x) be an irreducible monic polynomial of degree n with coefficients from the field F. If there exists  $d \in D$  such that p(d) = 0 then we can write

$$p(x) = (t - d_1)(t - d_2)(t - d_3)(t - d_n)$$

and each  $d_i$  is conjugate to  $d_1$ ; there exist nonzero elements  $s_i \in D$ , such that  $d_i = s_i ds_i^{-1}$  for  $1 \le i \le n$ . This theorem says that if the polynomial has one root in D then it factorizes completely as a product of linear factors over D!

## Extensions of Quaternion Algebras

It is possible to describe an algebra as an extension of a smaller algebra.

The process used for building quaternion algebras is known as Cayley-Dickson Doubling. It is a way of extending an algebra A to a new algebra, KD(A), and preserving all operations (addition, scalar multiplication, element multiplication and the norm), such that A is a subalgebra of KD(A). If A has a unity element  $\Theta$  then so does KD(A) and the extension can be expressed;

$$\mathsf{KD}(\mathsf{A},\Theta) = \mathsf{A} \oplus \mathsf{A}\mu$$

where  $\mu$  is a root of unity.

Any extension is a 2 degree extension over the preceding algebra.

### Frobenius

The mathematician Frobenius took this idea of subalgebras and found an incredible result about Real Division Algebras. **Theorem 6:** Suppose A is an algebra with unit over the field R of reals. Assume that the algebra A is without divisors of zero. If each element  $x \in A$  is algebraic with respect to the field  $\mathbb{R}$  then the algebra is isomorphic with one of the classical division algebras  $\mathbb{R}, \mathbb{C}, \text{ or } \mathbb{Q}.$ 

We have just classified all real division algebras!

# Applications of Quaternion Algebras

The are a myriad of uses for quaternion algebras including:

- Group Theory: The quaternions form an order 8 subgroup  $\{\pm 1, \pm i, \pm j, \pm k\}.$
- Number Theory: The mathematician Hurwitz introduced the ring of integral quaternions. This construction was used to prove Lagrange's theorem, that every positive integer is a sum of at most four squares.
- Rotations: Quaternions can describe rotations in 3-dimensional space. Traditionally rotations are considered compositions of rotations around the Cartesian coordinate axes by angles ψ, φ and θ. However, Euler proved that a general rotation of a rigid object can be described as a single rotation about some fixed vector. Given v = [l, m, n] over ℝ<sup>3</sup> then a rotation by an angle θ about v is given by

$$L_q(v) = qvq^*$$
 where  $q = \left[\cos\frac{\theta}{2}, I\sin\frac{\theta}{2}, m\sin\frac{\theta}{2}, m\sin\frac{\theta}{2}\right]$ 

### Applications of Quaternion Algebras Cont.

- Computer Graphics: The quaternions on the other hand generate a more realistic animation. A technique which is currently gaining favor is called spherical linear interpolation (SLERP) and uses the fact that the set of all unit quaternions form a unit sphere. By representing the quaternions of key frames as points on the unit sphere, a SLERP defines the intermediate sequence of rotations as a path along the great circle between the two points on the sphere.
- Physics: The quaternions have found use in a wide variety of research.
  - They can be used to express the Lorentz Transform making them useful for work on Special and General Relativity.
  - Their properties as generators of rotation make them incredibly useful for Newtonian Mechanics, scattering experiments such as crystallography, and quantum mechanics (particle spin is an emergent property of the mathematics).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

## References I

Section 21, 2013 CWoo, Cayley-Dickson Construction. March 21, 2013 http://planetmath.org/sites/default/files/texpdf/36586.pdf



Note: The Octonions. Department of Mathematucs, Section 2017 Section 2 UC Riverside. May 16, 2001



📎 Boggdan, Victor M. On Frobenius, Mazur, and Gelfand-Mazur Theorems on Division Algebras. Department of Mathematics, CUA, Washington DC. 2006



🛸 Lewis, David W. Quaternion Algebras and the Algebraic Legacy of Hamiltons Quaternions. Irish Math. Soc. Bulletin 57 (2006), pp 41-64.



Mukundan, R. Quaternions: From Classical Mechanics to Computer Graphics, and Beyond. Department of Computer Science, University of Canterbury, Christchurch, New Zealand.

# References II





📎 Eilenberg, Samuel Niven, Ivan. The Fundamental Theorem of Algebra For Quaternions. University of Michigan and Purdue University. 1939.





Sirard, P R. The Quaternion Group and Modern Physics Eur. J. Phys. 5 25, 1984



Arithmetic of Quaternion Algebra 2012. http://wkchan.web.wesleyan.edu/guaternion-2012.pdf

Applications of Quaternion Algebras

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

### References III

Zi Yang Sham. Quaternion Algebras and Quadratic Forms University of Waterloo. Waterloo, Ontario, Canada, 2008