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Lucky tickets example

Lucky tickets of six digits
A ticket of six digits is a string, six numbers long, where the digits can
take on values from 0 to 9. Then a ”lucky ticket” is a ticket where the
sum of the first three digits is equal to the sum of the last three digits
(e.g., 030111 or 225900). The problem is to find how many lucky tickets
there are in all the tickets of six digits.

Getting Started
I What are possible values that the sum of three digits can take on?
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Lucky tickets example

Lucky tickets of six digits
A ticket of six digits is a string, six numbers long, where the digits can
take on values from 0 to 9. Then a ”lucky ticket” is a ticket where the
sum of the first three digits is equal to the sum of the last three digits
(e.g., 030111 or 225900). The problem is to find how many lucky tickets
there are in all the tickets of six digits.

Getting Started
I What are possible values that the sum of three digits can take on?

Any number from 0 to 27.
I For each of the above values, how many one-digit numbers are there

whose digits sum up to that value?
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Lucky tickets example

Lucky tickets of six digits
A ticket of six digits is a string, six numbers long, where the digits can
take on values from 0 to 9. Then a ”lucky ticket” is a ticket where the
sum of the first three digits is equal to the sum of the last three digits
(e.g., 030111 or 225900). The problem is to find how many lucky tickets
there are in all the tickets of six digits.

Getting Started
I What are possible values that the sum of three digits can take on?

Any number from 0 to 27.
I For each of the above values, how many one-digit numbers are there

whose digits sum up to that value? One, if the value is between 0
and 9. None, if the value is 10 or above.
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Generating functions and formal power series

Formal Power Series
Let {an} = a0, a1, a2, . . . be a sequence of numbers. Then the formal
power series associated with {an} is the series

A(s) = a0 + a1s + a2s2 + . . . ,

where s is a formal variable.

In the context of combinatorics, A(s) is the generating function of {an}.
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Generating functions in the lucky tickets problem

The series

A1(s) = 1 + s + s2 + s3 + . . . + s9.

is the generating function where the coefficient an is the number of
one-digit numbers whose digits add up to n.
What about the series where an is the number of two-digit numbers with
sums of the digits equal to n?

I a0 = |{00}| = 1
I a1 = |{01, 10}| = 2
I a2 = |{02, 11, 20}| = 3
I . . .

So A2(s) = 1 + 2s + 3s2 + . . ..
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Take the square of A1(s).

(A1(s))2 =
9∑

i=0

i∑
k=0

akai−ks i .

Thus the coefficient of sn is the sum of all ajan−j , where 0 ≤ j ≤ n. Each
term ajan−j represents the total number of ways to write a two-digit
number where the first digit is j and the second digit is n − j . This is the
same as finding the number of two-digit numbers whose digits sum to n.
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Take the square of A1(s).

(A1(s))2 =
9∑

i=0

i∑
k=0

akai−ks i .

Thus the coefficient of sn is the sum of all ajan−j , where 0 ≤ j ≤ n. Each
term ajan−j represents the total number of ways to write a two-digit
number where the first digit is j and the second digit is n − j . This is the
same as finding the number of two-digit numbers whose digits sum to n.
This gives us that (A1(s))2 = A2(s) By a similar argument, we can show
that (A1(s))3 = A3(s), where A3(s) is the series such that an is the
number of three-digit numbers with sums of the digits equal to n.
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Solving with generating functions

For each value n between 0 and 27, the coefficient a′n of sn in (A1(s))3 is
equal to the ways that we can write the first three digits of a ticket and
have the sum of those digits equal n. Then a′2n is the number of ways to
write a lucky ticket where the sum of the first three digits is n and the
sum of the last three digits is n.
To find the solution to the lucky tickets problem, multiply out

(1 + s + s2 + . . . + s9)3

and take the sum of the squares of each coefficient.
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Generalizing

Notice that
I The variable s was not used as a function variable that we could

substitute a value in for, but was useful for keeping a tally of powers
I We only looked at series with a finite number of nonzero terms; what

if there are infinitely many?
Since it may be useful for other combinatorial applications to have a series
with infinitely many or an unknown number of nonzero terms, we
formalize the addition and multiplication of formal power series.
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The ring of formal power series

Let R be a ring. We define R[[s]] to be the set of formal power series in s
over R. Then R[[s]] is itself a ring.
Let A(s) = a0 + a1s + a2s2 + . . . and B(s) = b0 + b1s + b1s2 + . . . be
elements of R[[s]]. Then

I the sum A(s) + B(s) is defined to be C(s) = c0 + c1s + c2s2 + . . .,
where ci = ai + bi for all i ≥ 0, and

I the product A(s)B(s) is defined to be
C(s) = a0b0 + (a0b1 + a1b0)s + . . . +

(∑k
i=0 aibk−i

)
sk + . . ..
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A few algebraic properties

I If R is an integral domain, then R[[s]] is an integral domain.
I If R is a Noetherian ring, then R[[s]] is a Noetherian ring.
I If R is a field, then R[[s]] is a Euclidean domain.
I Let R be an integral domain. We can find a multiplicative inverse for

any series A(s) ∈ R[[s]] if and only if a0 is a unit in R.
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Multiplicative inverses

Let A(s) = a0 + a1s + a2s2 be a series over an integral domain, where a0
is a unit. Find the coefficients necessary to construct B(s), where
A(s)B(s) = 1. We can construct them as follows:

I a0b0 = 1 =⇒ b0 = 1/a0
I a0b1 + b0a1 = 0 =⇒ b1 = (b0a1)/a0
I etc.
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Ideals in R[[s]]

Let F be a field and let F [[s]] be the set of formal power series in s over
R. Then each ideal in F [[s]] is generated by sm for some m.
For each nonzero element A(S) in F [[s]], there exists m such that am 6= 0
and an = 0 for all n < m. Let M be the minimal such m over all the
nonzero elements of F [[s]]. If we take an element A(s) such that am is the
first nonzero coefficient in the series, we can factor A(s) into sMB(s),
where B(s) is series with nonzero constant term (an invertible series).
Then A(s)/B(s) = sM and so sM is in the ideal. By the minimality of M,
sM generates the ideal.
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Returning to combinatorics

A partition of a number n is a set of positive integers that sum to n. We
no longer have the restriction from 0 to 9 of the summands, and now we
have that two sums that have the same summands listed in a different
order are equivalent. The partitions of a few small numbers are as follows:

n = 1 1
n = 2 2 = 1 + 1
n = 3 3 = 2 + 1 = 1 + 1 + 1
n = 4 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

Let pn be the number of partitions of n. Then p0 = 1, since the empty
sum is a partition, and as we see from above p1 = 1, p2 = 2, p3 = 3, and
p4 = 5.
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What is the generating function for pn? Let P1(s) be the generating
function for the number of partitions of n where each of the summands is
1. Since there is one such partition for each n, where n ≥ 0,

P1(s) = 1 + s + s2 + . . . .

Multiplying each side of this equation by s yields

sP1(s) = s + s2 + s3 + . . .

= P1(s)− 1

which allows us to write

P1(s) = 1
1− s .
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Let P2(s) be the generating function for the number of partitions of n
where each of the summands is 2. For n even, there is one such partition
of n. For n odd, there are no such partitions. Thus

P2(s) = 1 + s2 + s4 + . . . .

Then we can multiply each side by s2 to get

s2P2(s) = s2 + s4 + s6 + . . .

= P2(s)− 1

and so

1 = (1− s2)P2(s)
1

1− s2 = P2(s).
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The partitions of n where the summands are all either 1 or 2 can be
constructed as sums of partitions of k where the summands are all 1 and
partitions of n − k where the summands are all 2. Summing up over all
possibilities for k, we find that the number of partitions of n with
summands all equal to 1 or 2 is

n∑
k=0

bkcn−k ,

where bk is the number of partitions of k with summands all equal to 1
and cn − k is the number of partitions of n − k with summands all equal
to 2. Therefore the generating function for the number of partitions of n
where the summands are 1 or 2 is

P1(s)P2(s) = 1
(1− s)(1− s2) .
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Repeating this process, we find that the generating function for the
number of partitions of n where the summands are no greater than k is
equal to

P1(s)P2(s)P3(s) . . . Pk(s) = 1
(1− s)(1− s2)(1− s3) . . . (1− sk) .

The generating function for the number of partitions of n with no
restrictions on n is thus

P(s) = P1(s)P2(s)P3(s) . . .

= 1
(1− s)(1− s2)(1− s3) . . .

.

Define the formal power series Q(s) to be

Q(s) = (1− s)(1− s2) . . . .
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Let us consider how to find the coefficient qk of Q(s). Define the series

Qk(s) = (1− s)(1− s2) . . . (1− sk)

and let q′k be the coefficient of sk in Qk(s). Notice that

Qk+1(s) = (1− sk+1)Qk(s)
= Qk(s)− sk+1Qk(s)

. Thus the coefficient of sk in Qk+1(s) is also equal to q′k . By repeating
this process, we will find that the coefficient of sk is unaffected by
multiplications of (1− sk+i ) for i > 0. Hence qk = q′k .
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We can find the coefficients up to qk of Q(s) by taking the coefficients
from Qk(s). The first few terms of Q(s) are as follows:

Q(s) = 1− s − s2 + s5 + s7 − s12− . . . . (1)

An identity for Q(s) from Euler:

Q(s) = 1 +
∞∑

k=1
(−1)k

(
s

3k2−k
2 + s

3k2+k
2

)
.

21 / 24



We have that

P(s) = 1
Q(s) , which gives us that

P(s)Q(s) = 1.

We already know that p0q0 = 1. Then

k∑
i=0

qipk−i = 0

for all k > 0. This yields

0 = pk +
k∑

i=1
qipk−i

pk = −
k∑

i=1
qipk−i .
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This yields the recurrence relation

pn = pn−1 + pn−2 − pn−5 − pn−7 + . . . ,

which is a finite sum since pk = 0 for all negative k.
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Questions?

24 / 24


