
Formal Power Series
License: CC BY-NC-SA

Emma Franz

April 28, 2015

1 Introduction

The set S[[x]] of formal power series in x over a set S is the set of functions from the nonnegative
integers to S. However, the way that we represent elements of S[[x]] will be as an infinite series,
and operations in S[[x]] will be closely linked to the addition and multiplication of finite-degree
polynomials. This paper will introduce a bit of the structure of sets of formal power series and
then transfer over to a discussion of generating functions in combinatorics.

The most familiar conceptualization of formal power series will come from taking coefficients
of a power series from some sequence. Let {an} = a0, a1, a2, . . . be a sequence of numbers. Then
the formal power series associated with {an} is the series A(s) = a0 + a1s + a2s

2 + . . ., where
s is a formal variable. That is, we are not treating A as a function that can be evaluated for
some s0. In general, A(s0) is not defined, but we will define A(0) to be a0.

2 Algebraic Structure

Let R be a ring. We define R[[s]] to be the set of formal power series in s over R. Then R[[s]]
is itself a ring, with the definitions of multiplication and addition following closely from how we
define these operations for polynomials.

Let A(s) = a0 + a1s+ a2s
2 + . . . and B(s) = b0 + b1s+ b1s

2 + . . . be elements of R[[s]]. Then
the sum A(s) + B(s) is defined to be C(s) = c0 + c1s + c2s

2 + . . ., where ci = ai + bi for all
i ≥ 0. Then

• the sum A(s) + B(s) is defined to be C(s) = c0 + c1s + c2s
2 + . . ., where ci = ai + bi for

all i ≥ 0, and

• the productA(s)B(s) is defined to be C(s) = a0b0+(a0b1+a1b0)s+. . .+
(∑k

i=0 aibk−i

)
sk+

. . ..

The closure of both of these operations follows from the closure of the operations in R. The
commutativity and associativity of addition and distributivity of multiplication over addition
also follow from these properties in R. The additive identity of R[[s]] is the power series where
each coefficient is the zero element of R, and so given a series A(s), its inverse −A(s) is the
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series whose coefficients are the inverses in R of the coefficients of A(s). In order to prove
multiplicative associativity, we simply need to tease through the definition of multiplication
and use the multiplicative associativity of R. Multiplicative commutativity and the existence
of a multiplicative identity in R[[x]] depend, respectively, on those two properties in R. We will
show this in the proof of the following theorem.

Theorem 2.1. If R is an integral domain, then R[[s]] is an integral domain.

Proof. Let A(s) and B(s) be two series in R[[s]]. Then the coefficient of xi in the product
A(s)B(s) is

a0bi + a1bi−1 + . . . + aib0

which by the commutativity of R can be rearranged as

b0ai + b1ai−1 + . . . + bia0.

These are precisely the coefficient of xi in the product B(s)A(s). Since the coefficients of xi are
equal in A(s)B(s) and in B(s)A(s) for all i, multiplication of elements in R[[s]] is commutative.

Since R is an integral domain, R has a multiplicative identity 1. For any series A(s) =
a0 + a1s + . . . in R[[s]],

A(s) = (1a0) + (1a1 + 0a0)s + (1a2 + 0a1 + 0a0)s
2 + . . .

= C(s)A(s),

where C(s) = 1 + 0s + 0s2 + . . . = 1. Also,

A(s) = (a01) + (a00 + a11)s + (1a2 + 0a1 + a00 + a10 + a21)s2 + . . .

= A(s)C(s).

Thus the series C(s) = 1 is the identity in R[[s]].

Finally, we must show that there are no zero divisors in R[[s]]. Let A(s) and B(s) be two
nonzero elements in R[[s]]. Then for exist minimal i and j such that ai 6= 0 and bj 6= 0. The
coefficient of si+j in A(s)B(s) is

i+j∑
k=0

akbi+j−k

. Where k < i, ak = 0 by the minimality of i. Where k > i, i + j − k < j and so bi+j−k = 0 by
the minimality of j. Thus the only nonzero term of the sum is where k = i, i + j − k = j. The
coefficient of si+j is equal to aibj , which is the product of two nonzero elements in R. Thus aibj
is nonzero and so A(s)B(s) is also nonzero. Hence R[[s]] has no zero divisors.

When F is a field, we can also look at F [[s]] as an algebra, where the scalars are elements
from F .

In order to study the ideals in F [[s]], we must first explore inverses and division. Let R be
an integral domain. We can find a multiplicative inverse for any series A(s) ∈ R[[s]] provided
that a0 is a unit in R. That is, there is some series B(s) ∈ R[[s]] such that A(s)B(s) = 1. We
can prove the existence of B(s) by induction on the number of known coefficients.
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The series A(s)B(s) has a constant term of 1 and zeroes for all other coefficients. Since a0 is
a unit, a0 has a multiplicative inverse 1

a0
and clearly, b0 = 1

a0
. Suppose that for some natural

number n, we know the coefficients of B(s) up to degree n − 1. Since the coefficient of degree
n of A(s)B(s) is equal to zero, we can write

0 = a0bn + a1bn−1 + . . . + an−1b1 + anb0 and, rearranging,

a0bn = −(a1bn−1 + . . . + an−1b1 + anb0)

bn = − 1

a0
(a1bn−1 + . . . + an−1b1 + anb0) since a0 is a unit.

Hence, by induction, we can find terms of a series B(s) which satisfies A(s)B(s) = 1. Also,
since R is commutative it follows that B(s)A(s) = 1.

We only have multiplicative inverses for elements of R[[s]] where the constant term is a unit,
but we will be able to use this fact to show that all ideals in F [[s]], where F is a field, are
principal.

Theorem 2.2. Let F be a field. Then F [[s]] is a principal ideal domain.

Proof. Let I be an ideal in F [[s]], the set of formal power series over an integral domain F . The
ideal containing only the zero element is principal, so let us assume that I contains at least one
nonzero element. For each nonzero element A(S) in F [[s]], there exists m such that am 6= 0 and
an = 0 for all n < m. Let M be the minimal such m over all the nonzero elements of F [[s]].
Therefore, there exists some series A(s) such that an = 0 for n < M and aM 6= 0. Let B(s) be
the series aM + aM+1s + . . .. Then by construction, A(s) = sMB(s). Since B(s) has a nonzero
constant term, the series has a multiplicative inverse 1

B(s) . Thus we can write A(s) 1
B(s) = sM ,

and so by the absorption property of the ideal, sM ∈ I. Thus sMF [[s]] ⊆ I. Also, each element
of I has zeroes for coefficients of up to sM , and so each can be written as the product of sM

with a series in F [[s]], implying that I ⊆ sMf [[s]]. Therefore I is generated by the element sM

and so I is a principal ideal.

An ascending chain of ideals for F [[s]] would look like skF [[s]] ⊂ sk−1F [[s]] ⊂ . . . ⊂ sF [[s]] ⊂
F [[s]].

If R is not a field, it is more difficult to state anything about the ideals of R[[s]]. The following
lemma will help with that.

Lemma 2.3. Let R be a ring and let I be an ideal in R[[s]]. For A(s) in R[[s]], let am be the
coefficient of the nonzero term of lowest degree. Let J = {am|A(s) ∈ R[[s]]}. Then J is an ideal
in R.

Proof. Let c be an element in R and assume I nonempty. Let j be in J . Then for some A(s)
in I, A(s) = 0 + 0s + 0s2 + . . . + jsg + . . .. Since I is an ideal and c = c + 0s + 0s2 + . . . is an
element of R[[s]], cA(s) is also an element of I. The coefficient of the nonzero term of lowest
degree for A(s) is cj. Thus cj ∈ J . Therefore J is an ideal in R.

A more complicated proof is that of the statement:

Proposition 2.4. Let R be a Noetherian ring. Then R[[s]] is Noetherian.
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The proof requires us to take an ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ . . . in R[[s]] and
find the corresponding chain J1 ⊆ J2 ⊆ J3 ⊆ . . . in R where Ji is defined for Ii the same way
that J is for I in the lemma. Since R is Noetherian, we can use the equality of Jm with Jn
for all m ≥ n, for some n, to show that each ideal Ii is finitely generated. Then we know that
R[[s]] is Noetherian.

3 Formal Power Series in Combinatorics

One of the settings where formal power series appear is in the context of combinatorics, where it
can be valuable to look at these power series without worrying about questions of convergence.
The formal power series a0 +a1s+a2s

2 + . . . appears as the generating function of the sequence
a0, a1, a2, . . .. We will look at two examples from [3].

An example of how generating functions might appear that does not get into the question of
infinite series is a problem that deals with finding the number of nonnegative integers whose
digits add up to a desired number. We allow the digits to range from 0 to 9, allowing for
numbers like ”003” or ”00.” For example, if n = 5, then 0140, 23, and 5 are examples of
four-digit, two-digit, and one-digit numbers (respectively).

Consider the series

A1(s) = 1 + s + s2 + s3 + . . . + s9.

The coefficient an of sn is the number of one-digit numbers m with the sum of the digits of m
equal to n. Let us take a look at the series where an is the number of two-digit numbers with
sums of the digits equal to n. The first few terms of the series can be easily shown to be

A2(s) = 1 + 2s + 3s2 + 4s3 + . . . .

It is also clear that A2(s) will be a polynomial of degree 18, since 18 is the highest number that
can be written as the sum of two digits.

Lemma 3.1. Let an be the coefficient of sn in A1(s) and let a′n be the coefficient of sn in A2(s).
Then a′n = a0an + a1an−1 + . . . ana0. Equivalently, A2(s) = (A1(s))

2.

Proof. Each term akaj in the sum represents the total number of ways to write a two-digit
number where the first digit is k and the second digit is j. We sum up over all choices of k and
j where k + j = n.

Lemma 3.2. Let the coefficient a′′n of sn in A3(s) be equal to the number of three-digit numbers
whose the sum of the digits is n. Then A3(s) = (A1(s))

3.

Proof. Let A1(s) = a0 + a1s + a2s
2 + . . . and let A2(s) = a′0 + a′1s + a′2s

2 + . . .. We can write
a three-digit number whose digits add up to n by juxtaposing a two-digit number whose digits
add up to k with a one-digit number whose digits add up to j, where n = j + k. There are a′kaj
juxtapositions of this form. Summing up over all possibilities for j and k yields

n∑
i=0

a′ian−i.

Thus A3(s) = A2(s)A1(s) = (A1(s))
3.
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We can use this process to find a generating function whose coefficients tell us how many
k-digit numbers there are with digits adding up to some nonnegative integer.

Let us look at a related example where the generating function we will find has infinitely
many terms.

A partition of a number n is a set of positive integers that sum to n. We no longer have the
restriction from 0 to 9 of the summands, and now we have that two sums that have the same
summands listed in a different order are equivalent. The partitions of a few small numbers are
as follows:

n = 1 1

n = 2 2 = 1 + 1

n = 3 3 = 2 + 1 = 1 + 1 + 1

n = 4 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

Let pn be the number of partitions of n. Then p0 = 1, since the empty sum is a partition, and
as we see from above p1 = 1, p2 = 2, p3 = 3, and p4 = 5.

What is the generating function for pn? Let P1(s) be the generating function for the number
of partitions of n where each of the summands is 1. Since there is one such partition for each
n, where n ≥ 0,

P1(s) = 1 + s + s2 + . . . .

Multiplying each side of this equation by s yields

sP1(s) = s + s2 + s3 + . . .

= P1(s)− 1

which allows us to write

P1(s) =
1

1− s
.

Let P2(s) be the generating function for the number of partitions of n where each of the
summands is 2. For n even, there is one such partition of n. For n odd, there are no such
partitions. Thus

P2(s) = 1 + s2 + s4 + . . . .

Then we can multiply each side by s2 to get

s2P2(s) = s2 + s4 + s6 + . . .

= P2(s)− 1

and so

1 = (1− s2)P2(s)

1

1− s2
= P2(s).

The partitions of n where the summands are all either 1 or 2 can be constructed as sums of
partitions of k where the summands are all 1 and partitions of n− k where the summands are
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all 2. Summing up over all possibilities for k, we find that the number of partitions of n with
summands all equal to 1 or 2 is

n∑
k=0

bkcn−k,

where bk is the number of partitions of k with summands all equal to 1 and cn− k is the number
of partitions of n− k with summands all equal to 2. Therefore the generating function for the
number of partitions of n where the summands are 1 or 2 is

P1(s)P2(s) =
1

(1− s)(1− s2)
.

Repeating this process, we find that the generating function for the number of partitions of
n where the summands are no greater than k is equal to

P1(s)P2(s)P3(s) . . . Pk(s) =
1

(1− s)(1− s2)(1− s3) . . . (1− sk)
.

The generating function for the number of partitions of n with no restrictions on n is thus

P (s) = P1(s)P2(s)P3(s) . . .

=
1

(1− s)(1− s2)(1− s3) . . .
.

Define the formal power series Q(s) to be

Q(s) = (1− s)(1− s2) . . . .

Let us consider how to find the coefficient qk of Q(s). Define the series

Qk(s) = (1− s)(1− s2) . . . (1− sk)

and let q′k be the coefficient of sk in Qk(s). Notice that

Qk+1(s) = (1− sk+1)Qk(s)

= Qk(s)− sk+1Qk(s)

. Thus the coefficient of sk in Qk+1(s) is also equal to q′k. By repeating this process, we will find
that the coefficient of sk is unaffected by multiplications of (1− sk+i) for i > 0. Hence qk = q′k.
We can find the coefficients up to qk of Q(s) by taking the coefficients from Qk(s). The first
few terms of Q(s) are as follows:

Q(s) = 1− s− s2 + s5 + s7 − s12− . . . . (1)

An identity for Q(s) was conjectured by Euler:

Theorem 3.3.

Q(s) = 1 +
∞∑
k=1

(−1)k
(
s

3k2−k
2 + s

3k2+k
2

)
.
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We have that

P (s) =
1

Q(s)
, which gives us that

P (s)Q(s) = 1.

We already know that p0q0 = 1. Then

k∑
i=0

qipk−i = 0

for all k > 0. This yields

0 = pk +

k∑
i=1

qipk−i

pk = −
k∑

i=1

qipk−i.

Along with (1), this yields the recurrence relation

pn = pn−1 + pn−2 − pn−5 − pn−7 + . . . ,

which is a finite sum since pk = 0 for all negative k.

Although this did not give us a closed form for the number of partitions of an integer n, we do
now have a way to calculate pn based on the number of partitions for integers smaller than n,
and we have hopefully had a taste for how formal power series might be used in combinatorial
problems. Even in situations where an infinite power series’ convergence is in doubt or depends
on where it is evaluated, we can use formal power series and the operations we have defined
on formal power series to create a meaningful representation of what is going on and generate
solutions.
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