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An Introduction To Point-Set Topology
Definition of Topological Spaces

Definition:
A topological space is a nonempty set X paired with a collection of subsets of X called
open sets satisfying:
• X and ∅ are both open sets.
• The finite or infinite union of any collection of open sets is itself an open set.
• The finite intersection of any collection of open sets is itself an open set.
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An Introduction To Point-Set Topology
Examples of Topological Spaces

Example:
We can define a topology on Rn to be the set of all possible arbitrary unions and finite
intersections of open sets of the form:

U = {x ∈ Rn : d(x, y) < ε}

for any y ∈ Rn, ε > 0, where d is the Euclidean distance function.

Example:
We can define a topology on the set I = [0, 1] as a subset of R1 by letting a set U be open in I if
and only if there exists an open set V in R1 such that I ∩ V = U.
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An Introduction To Point-Set Topology
Definition of Product Spaces

Definition:
The product space of two topological spaces X and Y is the topological space X × Y .
The topology on X × Y is the set of all possible arbitrary unions and finite intersections of open
sets U × V , where U is an open set in X and V is an open set in Y .

Example:
If we let S1 = {x ∈ R2 : d(x, 0) = 1} be the unit circle, then we can build the surface of a
torus in R3 as the product topology S1 × S1.

b
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An Introduction To Point-Set Topology
Definition of Continuous Functions

Definition:
If X and Y are topological spaces and f : X → Y , then f is a continuous function if f−1(V) is an
open set in X for all open sets V in Y .

• If we are working with functions to and from Rn or any subsets of Rn, this definition of
continuity is identical to the epsilon-delta definition.



Basic Topology The Fundamental Group Examples Seifert-van Kampen Theorem

An Introduction To Point-Set Topology
Definition of Continuous Functions

Definition:
If X and Y are topological spaces and f : X → Y , then f is a continuous function if f−1(V) is an
open set in X for all open sets V in Y .

• If we are working with functions to and from Rn or any subsets of Rn, this definition of
continuity is identical to the epsilon-delta definition.



Basic Topology The Fundamental Group Examples Seifert-van Kampen Theorem

Constructing The Fundamental Group
Preliminary Definitions - Paths and Loops

At this point, we understand enough topology to describe the construction of the fundamental
group of a topological space.

Definition:
If X is a topological space and f : I → X is a continuous function, then f is a path in X. Given a
path f , f (0) and f (1) are respectively the initial point and terminal point of the path. If f is a
path such that f (0) = f (1), then f is a loop based at the point f (0).

[ [
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Constructing The Fundamental Group
Preliminary Definitions - Homotopic Functions

Definition:
Given a topological space X and paths f , g : I → X, the functions f and g are homotopic to each
other if there exists a continuous function H : I × I → X such that:
• H(i, 0) = f (i) for all i ∈ I

• H(i, 1) = g(i) for all i ∈ I.

In this scenario, H is the homotopy from f to g.

If f , g : I → X are paths, then a homotopy H : I × I → X from f to g can be thought of as a
function which continuously deforms the function f into the function g.
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Constructing The Fundamental Group

We can now construct the fundamental group:

• Let X be a topological space and let b ∈ X be any point in X.
• Let L be the set of all loops f : I → X such that f (0) = f (1) = b.

• Define an operation ∗ on L by (f ∗ g)(t) =

{
f (2t) for t ∈ [0, 1

2 ]

g(2t − 1) for t ∈ [ 1
2 , 1]

• Define a relation ∼ on L where f ∼ g if and only if there exists a homotopy from f to g.
• This is an equivalence relation.

• Let L/ ∼ be the set of equivalence classes of L under ∼. This is the set component of the
fundamental group.

• Define an operation on L/ ∼ by: [f ][g] = [f ∗ g], for all [f ], [g] ∈ L/ ∼.

Definition:
The fundamental group of the topological space X based at the point b is the set L/ ∼
combined with the operation of conjugation as defined above. This is denoted by π1(X, b).
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Constructing The Fundamental Group

To show that the fundamental group is actually a group:

• To show the operation defined on π1(X, b) is associative, we must show that
[f ] ([g][h]) = ([f ][g]) [h]. This is the same as showing that f ∗ (g ∗ h) ∼ (f ∗ g) ∗ h.

• If c : I → X is the constant map defined by c(i) = b, then [c] is the identity element of
π1(X, b). To show this, we show that [f ][c] = [f ], which is the same as showing that
f ∗ c ∼ f .

• If [f ] ∈ π1(X, b), if we let f r : I → X by f r(i) = f (1− i), then [f ]−1 = [f r]. To show
this, we show that [f ][f r] = [c]. That is, f ∗ f r ∼ c.
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Examples
Fundamental Group Of A Square With A Hole

Example:

• Consider the space I × I with a disc removed, as shown below.
• If we make a loop f without looping around the hole, we can continuously deform f back

into c.
• However, if we loop g around the hole it is impossible to continuously deform g back

into c.
• Therefore, [f ] 6= [g].
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Examples
Fundamental Group Of S1

(1,0)

S 1

• Consider the space S1.

• If we make one full rotation around S1, it is impossible to continuously deform that loop
back into the constant map (identity element).

• If we make two full rotations in the same direction, we cannot deform the rotations back
into one rotation or the identity.

• If we make one rotation in the opposite direction, we undo the last rotation.
• From this, we assert that π1(S1, (1, 0)) ∼= Z.
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Examples
The Product Topology And Group Products

Theorem:
If X and Y are topological spaces and x ∈ X and y ∈ Y, then
π1(X × Y, (x, y)) ∼= π1(X, x)× π1(Y, y).

Example:
Since we can represent the surface of a torus topologically as S1 × S1, therefore the
fundamental group of a torus is isomorphic to Z× Z.

b
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The Seifert-van Kampen Theorem

Definition:
A topological space X is path connected if for all x, y ∈ X, there exists a path f : I → X such
that f (0) = x and f (1) = y.

Theorem:
• Let X be a path connected topological space such that X = X1 ∪ X2 and X1 ∩ X2 6= ∅ for

path connected open sets X1,X2.
• Let X0 = X1 ∩ X2 and let x0 ∈ X0. We require that X0 is path connected.
• Let

φ1 : π1(X0, x0) ↪−→ π1(X1, x0) by φ1([f ]) = [f ]

and let
φ2 : π1(X0, x0) ↪−→ π1(X2, x0) by φ2([f ]) = [f ]

be the inclusion homomorphisms.
• Let 〈A|RA〉 and 〈B|RB〉 be presentations for π1(X1, x0) and π1(X2, x0) respectively.
• Then, G is a presentation for π1(X, x0), where

G = 〈A,B | RA,RB, φ1([α])φ2([α])
−1 where [α] ∈ π1(X0, x0)〉
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Example
The Fundamental Group Of A Figure Eight

Example:

• Let X be the figure eight shown below and let X1,X2, and X0 be the open subsets of X
shown below.

• π1(X1, x0) and π1(X2, x0) are both isomorphic to Z.
• So, 〈a|〉 and 〈b|〉 are the presentations for π1(X1, x0) and π1(X2, x0).

• π1(X0, x0) ∼= {e}, implying that the only relations of the form
φ1([α])φ2([α])

−1 where [α] ∈ π1(X0, x0) are [c], the identity element.
• Therefore, 〈a, b|〉 is the presentation for π1(X, x0).

x0
X

X1 X2

X0
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