◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The Fundamental Group of Topological Spaces An Introduction To Algebraic Topology

Thomas Gagne

Department of Mathematics University of Puget Sound

May 4, 2015

The Fundamental Group

Examples

Seifert-van Kampen Theorem

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

An Introduction To Point-Set Topology

Definition of Topological Spaces

Definition:

A *topological space* is a nonempty set *X* paired with a collection of subsets of *X* called *open sets* satisfying:

- X and \varnothing are both open sets.
- The finite or infinite union of any collection of open sets is itself an open set.
- The finite intersection of any collection of open sets is itself an open set.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An Introduction To Point-Set Topology

Examples of Topological Spaces

Example:

We can define a topology on \mathbb{R}^n to be the set of all possible arbitrary unions and finite intersections of open sets of the form:

 $U = \{x \in \mathbb{R}^n : d(x, y) < \varepsilon\}$

for any $y \in \mathbb{R}^n$, $\varepsilon > 0$, where *d* is the Euclidean distance function.

Example:

We can define a topology on the set I = [0, 1] as a subset of \mathbb{R}^1 by letting a set U be open in I if and only if there exists an open set V in \mathbb{R}^1 such that $I \cap V = U$.

Seifert-van Kampen Theorem

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

An Introduction To Point-Set Topology

Definition of Product Spaces

Definition:

The *product space* of two topological spaces *X* and *Y* is the topological space $X \times Y$. The topology on $X \times Y$ is the set of all possible arbitrary unions and finite intersections of open sets $U \times V$, where *U* is an open set in *X* and *V* is an open set in *Y*.

Example:

If we let $S^1 = \{x \in \mathbb{R}^2 : d(x, 0) = 1\}$ be the unit circle, then we can build the surface of a torus in \mathbb{R}^3 as the product topology $S^1 \times S^1$.

The Fundamental Group

Example:

Seifert-van Kampen Theorem

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

An Introduction To Point-Set Topology

Definition of Continuous Functions

Definition:

If X and Y are topological spaces and $f : X \to Y$, then f is a *continuous* function if $f^{-1}(V)$ is an open set in X for all open sets V in Y.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

An Introduction To Point-Set Topology

Definition of Continuous Functions

Definition:

If X and Y are topological spaces and $f : X \to Y$, then f is a *continuous* function if $f^{-1}(V)$ is an open set in X for all open sets V in Y.

• If we are working with functions to and from \mathbb{R}^n or any subsets of \mathbb{R}^n , this definition of continuity is identical to the epsilon-delta definition.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

▲□▶▲□▶▲□▶▲□▶ □ のQで

Constructing The Fundamental Group

Preliminary Definitions - Paths and Loops

At this point, we understand enough topology to describe the construction of the fundamental group of a topological space.

Definition:

If X is a topological space and $f : I \to X$ is a continuous function, then f is a *path* in X. Given a path f, f(0) and f(1) are respectively the *initial point* and *terminal point* of the path. If f is a path such that f(0) = f(1), then f is a *loop* based at the point f(0).

Seifert-van Kampen Theorem

Constructing The Fundamental Group

Preliminary Definitions - Homotopic Functions

Definition:

Given a topological space X and paths $f, g: I \to X$, the functions f and g are *homotopic* to each other if there exists a continuous function $H: I \times I \to X$ such that:

- H(i, 0) = f(i) for all $i \in I$
- H(i, 1) = g(i) for all $i \in I$.

In this scenario, H is the *homotopy* from f to g.

If $f, g: I \to X$ are paths, then a homotopy $H: I \times I \to X$ from f to g can be thought of as a function which continuously deforms the function f into the function g.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Seifert-van Kampen Theorem

Constructing The Fundamental Group

We can now construct the fundamental group:

- Let *X* be a topological space and let $b \in X$ be any point in *X*.
- Let *L* be the set of all loops $f : I \to X$ such that f(0) = f(1) = b.
- Define an operation * on L by $(f * g)(t) = \begin{cases} f(2t) & \text{for } t \in [0, \frac{1}{2}] \\ g(2t-1) & \text{for } t \in [\frac{1}{2}, 1] \end{cases}$
- Define a relation \sim on L where $f \sim g$ if and only if there exists a homotopy from f to g.
 - · This is an equivalence relation.
- Let L/ ∼ be the set of equivalence classes of L under ∼. This is the set component of the fundamental group.
- Define an operation on L/\sim by: [f][g] = [f * g], for all $[f], [g] \in L/\sim$.

Definition:

The *fundamental group of the topological space X based at the point b* is the set L/\sim combined with the operation of conjugation as defined above. This is denoted by $\pi_1(X, b)$.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constructing The Fundamental Group

To show that the fundamental group is actually a group:

To show the operation defined on π₁(X, b) is associative, we must show that
 [f] ([g][h]) = ([f][g]) [h]. This is the same as showing that f * (g * h) ~ (f * g) * h.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constructing The Fundamental Group

To show that the fundamental group is actually a group:

- To show the operation defined on π₁(X, b) is associative, we must show that
 [f] ([g][h]) = ([f][g]) [h]. This is the same as showing that f * (g * h) ~ (f * g) * h.
- If $c: I \to X$ is the constant map defined by c(i) = b, then [c] is the identity element of $\pi_1(X, b)$. To show this, we show that [f][c] = [f], which is the same as showing that $f * c \sim f$.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

Constructing The Fundamental Group

To show that the fundamental group is actually a group:

- To show the operation defined on π₁(X, b) is associative, we must show that
 [f] ([g][h]) = ([f][g]) [h]. This is the same as showing that f * (g * h) ~ (f * g) * h.
- If $c: I \to X$ is the constant map defined by c(i) = b, then [c] is the identity element of $\pi_1(X, b)$. To show this, we show that [f][c] = [f], which is the same as showing that $f * c \sim f$.
- If $[f] \in \pi_1(X, b)$, if we let $f^r : I \to X$ by $f^r(i) = f(1-i)$, then $[f]^{-1} = [f^r]$. To show this, we show that $[f][f^r] = [c]$. That is, $f * f^r \sim c$.

Seifert-van Kampen Theorem

▲□▶▲□▶▲□▶▲□▶ □ のQで

Examples

Fundamental Group Of A Square With A Hole

Example:

- Consider the space $I \times I$ with a disc removed, as shown below.
- If we make a loop f without looping around the hole, we can continuously deform f back into c.
- However, if we loop g around the hole it is impossible to continuously deform g back into c.
- Therefore, $[f] \neq [g]$.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Examples

Fundamental Group Of S1

• Consider the space S^1 .

The Fundamental Group

Examples

Seifert-van Kampen Theorem

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Examples

- Consider the space S^1 .
- If we make one full rotation around S¹, it is impossible to continuously deform that loop back into the constant map (identity element).

The Fundamental Group

Examples

Seifert-van Kampen Theorem

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Examples

- Consider the space *S*¹.
- If we make one full rotation around S¹, it is impossible to continuously deform that loop back into the constant map (identity element).
- If we make two full rotations in the same direction, we cannot deform the rotations back into one rotation or the identity.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

▲□▶▲□▶▲□▶▲□▶ □ のQで

Examples

- Consider the space S¹.
- If we make one full rotation around S¹, it is impossible to continuously deform that loop back into the constant map (identity element).
- If we make two full rotations in the same direction, we cannot deform the rotations back into one rotation or the identity.
- If we make one rotation in the opposite direction, we undo the last rotation.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

▲□▶▲□▶▲□▶▲□▶ □ のQで

Examples

- Consider the space S¹.
- If we make one full rotation around S¹, it is impossible to continuously deform that loop back into the constant map (identity element).
- If we make two full rotations in the same direction, we cannot deform the rotations back into one rotation or the identity.
- If we make one rotation in the opposite direction, we undo the last rotation.
- From this, we assert that $\pi_1(S^1, (1, 0)) \cong \mathbb{Z}$.

The Fundamental Group

Examples

Seifert-van Kampen Theorem

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Examples

The Product Topology And Group Products

Theorem: *If X and Y are topological spaces and x \in X and y \in Y, then* $\pi_1(X \times Y, (x, y)) \cong \pi_1(X, x) \times \pi_1(Y, y)$.

Example:

Since we can represent the surface of a torus topologically as $S^1 \times S^1$, therefore the fundamental group of a torus is isomorphic to $\mathbb{Z} \times \mathbb{Z}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The Seifert-van Kampen Theorem

Definition:

A topological space X is *path connected* if for all $x, y \in X$, there exists a path $f : I \to X$ such that f(0) = x and f(1) = y.

Theorem:

- Let *X* be a path connected topological space such that $X = X_1 \cup X_2$ and $X_1 \cap X_2 \neq \emptyset$ for path connected open sets X_1, X_2 .
- Let $X_0 = X_1 \cap X_2$ and let $x_0 \in X_0$. We require that X_0 is path connected.
- Let

$$\phi_1: \pi_1(X_0, x_0) \hookrightarrow \pi_1(X_1, x_0)$$
 by $\phi_1([f]) = [f]$

and let

$$\phi_2: \pi_1(X_0, x_0) \hookrightarrow \pi_1(X_2, x_0)$$
 by $\phi_2([f]) = [f]$

be the inclusion homomorphisms.

- Let $\langle A|R_A \rangle$ and $\langle B|R_B \rangle$ be presentations for $\pi_1(X_1, x_0)$ and $\pi_1(X_2, x_0)$ respectively.
- Then, \mathcal{G} is a presentation for $\pi_1(X, x_0)$, where

$$\mathcal{G} = \langle A, B \mid R_A, R_B, \phi_1([\alpha])\phi_2([\alpha])^{-1} \text{ where } [\alpha] \in \pi_1(X_0, x_0) \rangle$$

Seifert-van Kampen Theorem

▲□▶▲□▶▲□▶▲□▶ □ のQで

Example

The Fundamental Group Of A Figure Eight

Example:

- Let *X* be the figure eight shown below and let *X*₁, *X*₂, and *X*₀ be the open subsets of *X* shown below.
- $\pi_1(X_1, x_0)$ and $\pi_1(X_2, x_0)$ are both isomorphic to \mathbb{Z} .
 - So, ⟨a|⟩ and ⟨b|⟩ are the presentations for π₁(X₁, x₀) and π₁(X₂, x₀).
- $\pi_1(X_0, x_0) \cong \{e\}$, implying that the only relations of the form $\phi_1([\alpha])\phi_2([\alpha])^{-1}$ where $[\alpha] \in \pi_1(X_0, x_0)$ are [c], the identity element.
- Therefore, $\langle a, b | \rangle$ is the presentation for $\pi_1(X, x_0)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The Fundamental Group of Topological Spaces An Introduction To Algebraic Topology

Thomas Gagne

Department of Mathematics University of Puget Sound

May 4, 2015