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1 Abstract

In the study of topology, we are often interested in understanding and classifying the internal structure of

topological spaces. Algebraic topology is the application of abstract algebra to topology in order to further

identify the structure of topological spaces by developing a correspondence between topological spaces and

certain groups called homotopy groups. In this paper, we will examine the construction and nature of the first

homotopy group, which is more commonly known as the fundamental group of a topological space.

This paper is intended for undergraduate students of group theory with little to no background in point-set

topology and will provide an introduction to algebraic topology and homotopy groups. We will first briefly cover

the basics of point-set topology, then use these concepts to facilitate a rigorous study of the construction of the

fundamental group. Afterwards, we will examine various proofs describing the nature of the fundamental group

and demonstrate basic methods of calculation of the fundamental group of a topological space.

2 Basic Topology

In order to properly construct the fundamental group, we require a basic understanding of point-set topology.

Definition 2.1: A topological space is any nonempty set X paired with a collection of subsets of X known

as open sets satisfying:

(i) X and ∅ are contained in the collection of open sets.

(ii) The finite or infinite union of any open sets is itself an open set.

(iii) The finite intersection of any open sets is itself an open set.

�

The collection of open sets of a topological space is called the topology on a set X. Given a set X and a

collection of subsets forming a topology on X, we will commonly refer to the topological space as “the space X”

and refer to elements of the topology on X as “the open sets of X”.

Example 2.2: We can define a topology on Rn by letting the collection of open sets be the set of all

possible arbitrary unions and finite intersections of subsets of Rn of the form U = {x ∈ Rn : d(x, y) < ε}
for any y ∈ Rn, ε > 0, where d(x, y) is the Euclidean distance between the points x and y. For example,

(−1, 1) = {x ∈ R : d(x, 0) < 1} is an open set in R1.
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Given this topology, we can define a topology on I = [0, 1] ⊂ R1 by letting a set V ⊆ I be open if

there exists an open set U ⊆ R1 such that V = I ∩ U . For example, ( 1
4 ,

3
4 ) = {x ∈ I : d(x, 12 ) < 1

4} and

[0, 14 ) ∪ ( 3
4 , 1] = {x ∈ I : d(x, 0) < 1

4} ∪ {x ∈ I : d(x, 1) < 1
4} are both open sets in this topology. �

When we constructed the topological space I as a subset of another topological space in the manner above,

we built what is called the relative topology on I as a subset of R1.

Later on, the spaces Rn and I = [0, 1] of Example 2.2 will be instrumental in constructing the fundamental

group. For this reason, when we later on make reference to either space we will be referring to the topological

spaces as described above unless we explicitly state otherwise.

Definition 2.3: Given two topological spaces X and Y , the product topology of X and Y is the set X × Y
with a topology consisting of all possible arbitrary unions and finite intersections of subsets of the form U × V ,

where U is open in X and V is open in Y . The topological space X × Y is referred to as the product space. �

Definition 2.4: Given two topological spaces X and Y , a mapping f : X → Y is continuous if f−1(V ) is

an open set in X for every open set V ⊆ Y . �

While we will not prove it here, when considering the topological space Rn, this topological definition of

continuity is identical to the more common epsilon-delta definition of continuity. While we will almost exclusively

use the topological definition of continuity in this paper, this fact may help the reader better understand the

relationship between continuous functions and open sets.

Propostion 2.5: If X,Y, Z are topological spaces and f : X → Y and g : Y → Z are continuous functions,

then g ◦ f is a continuous function.

Proof. Suppose U is an open set in Z. Since g is a continuous function, g−1(U) is open in Y . Since f is

continuous, f−1(g−1(U)) = (g ◦ f)−1(U) is open in X. Therefore, g ◦ f is continuous.

The following theorem will later on be of critical importance to our construction of the fundamental group.

Theorem 2.6: (Map Gluing Theorem) Suppose A,B are subsets of a topological space X such that

A ∪B = X and such that there exist open sets U, V ⊆ X where A = X\U and B = X\V . If Y is a topological

space and f : X → Y and g : X → Y are well-defined continuous functions such that f |A∩B = g|A∩B , then the

function h : X → Y described by

h(x) =

{
f(x) for x ∈ A
g(x) for x ∈ B

is continuous.

Proof. Because f |A∩B = g|A∩B and f and g are both well-defined, h is clearly a well-defined function. Let W

be an open set in Y . Then, f−1(W ) and g−1(W ) are open in X since f and g are continuous. Furthermore,

f−1(Y \W ) = X\f−1(W ) and g−1(Y \W ) = X\g−1(W ). Since A = X\U and B = X\V , therefore f−1(Y \W )∩
A = X\(f−1(W ) ∩ U) and g−1(Y \W ) ∩B = X\(g−1(W ) ∩ V )

Furthermore, it is clear that

X\h−1(W ) = h−1(Y \W ) = (f−1(Y \W ) ∩A) ∪ (g−1(Y \W ) ∩B)

= X\(f−1(W ) ∩ U) ∪X\(g−1(W ) ∩ V ) = X\
(
(f−1(W ) ∪ U) ∪ (g−1(W ) ∪ V )

)
This implies that h−1(W ) = (f−1(W ) ∪ U) ∪ (g−1(W ) ∪ V ). Since the finite union and intersection of open

sets is open, h−1(W ) is open in X and h is therefore continuous.
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3 Construction of the Fundamental Group

With some basic topological definitions and tools now available to us, we begin our study of the fundamental

group. We will first demonstrate the method of construction of the fundamental group, then prove that it is

indeed a group.

Definition 3.1: If X is a topological space and f : I → X is a continuous function, then f is a path in X.

Given a path f , f(0) and f(1) are respectively known as the initial point and terminal point of the path. If f

is a path such that f(0) = f(1), then f is a loop based at the point f(0). �

Note that in a topological space X, it is not necessarily true that there exists a path from any one point to

another. For example, if we let I\{ 12} have the relative topology as a subset of I, then there does not exist a

continuous path from 1
4 to 3

4 . If, however, it is true that any pair of points in a space X have a continuous path

connecting them, then the space X is called path connected.

Definition 3.2: Given topological spaces X and Y and continuous functions f, g : X → Y , the functions f

and g are homotopic to each other if there exists a continuous function H : X×I → Y such that H0 = H(x, 0) =

f(x) and H1 = H(x, 1) = g(x). In this scenario, H is called a homotopy from f to g. �

Intuitively, the concept of two paths being homotopic coincides with the idea of each path being able to be

continuously deformed into the other. Given a homotopy H from a path f to a path g, when evaluating at

H(i, t), i, t ∈ I, it may help to think of t as being the variable for time as f continuously deforms into g. At

time zero the function H copies f , and at time one it copies g. At every time between zero and one, H traces

some path in X between f and g, since H is continuous.

With these definitions, we can begin our construction of the fundamental group. Suppose X is a topological

space and let b ∈ X. Let L be the set of all loops in X based at the point b. Define a relation ∼ on L where for

any two loops f, g ∈ L, f ∼ g if and only if f is homotopic to g.

Theorem 3.3: ∼ defines an equivalence relation on L.

Proof. Let f, g, h ∈ L.

Reflexive: Let H : I × I → X by H(i, t) = f(i) for all i, t ∈ I. Since f is continuous, so is H. H then clearly

describes a homotopy from f to f . Thus, f ∼ f .

Symmetric: Suppose that f ∼ g. Then there exists some homotopy H from f to g. Let H ′ : I × I → X by

H ′(i, t) = H(i, 1 − t) for all i, t ∈ I. Then, H ′0 = g(i) and H ′1 = f(i). Furthermore, since 1 − t is a continuous

function and because composition of continuous functions is continuous by Proposition 2.5, H ′ is a continuous

function. Therefore, g ∼ f .

Transitive: Suppose that f is equivalent to g by a homotopy F and that g is equivalent to h by a homotopy

G. Let H : I × I → X by

H(i, t) =

{
F (i, 2t) for t ∈ [0, 12 ]

G(i, 2t− 1) for t ∈ [ 12 , 1]

for all i ∈ I. Since 2t and 2t− 1 and F and G are all continuous functions, therefore F (i, 2t) and G(i, 2t− 1) are

continuous functions since the composition of continuous functions is continuous. By the Map Gluing Theorem,

H is therefore a continuous function, and so f ∼ h.

Now that we have proven ∼ is an equivalence relation, we can form L/ ∼ as the set of equivalence classes

of L under ∼. This will become the set of the fundamental group. At this point, there remains only one more

component to forming the fundamental group: a multiplicative operation.
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Given two loops f, g : I → X in L, define an operation ∗ on L by

(f ∗ g)(t) =

{
f(2t) for t ∈ [0, 12 ]

g(2t− 1) for t ∈ [ 12 , 1].

Note that because 2t and 2t− 1 are continuous, therefore f(2t) and g(2t− 1) are continuous by Proposition 2.3.

By the Map Gluing Theorem, f ∗ g is continuous and is therefore a path in L since it is clearly based at the

point b.

Intuitively, f ∗g is a path which first follows the path of f , then follows the path of g. To meet our restriction

to [0, 1] however, we follow the paths of f and g twice as fast as we did individually.

Given the operation ∗ on L, we can extend it to L/ ∼ by defining an operation on L/ ∼ as: [f ][g] = [f ∗ g]

for all [f ], [g] ∈ L/ ∼. The set L/ ∼ combined with this operation is the fundamental group of X based at b,

and is denoted as π1(X, b).

Theorem 3.4: Given a topological space X and a base point b ∈ X, the fundamental group π1(X, b) forms

a group under the operation [f ][g] = [f ∗ g] for all [f ], [g] ∈ π1(X, b).

We shall prove this result through a series of lemmas.

Lemma 3.5: Given a fundamental group π1(X, b), the operation [f ][g] = [f ∗ g] for all [f ], [g] ∈ π1(X, b) is

well-defined.

Proof. Suppose that [f1] = [f2] and [g1] = [g2], for some [f1], [f2], [g1], [g2] ∈ π1(X, b). Then there must exist

homotopies F,G : I × I → X taking f1 to f2 and g1 to g2 respectively. To show that [f1][g1] = [f1 ∗ g1] =

[f2 ∗ g2] = [f2][g2], we shall find a homotopy taking f1 ∗ g1 to f2 ∗ g2. Let H : I × I → X by

H(i, t) =



F (2i, 2t) for t ∈ [0, 12 ], i ∈ [0, 12 ]

g1(2i− 1) for t ∈ [0, 12 ], i ∈ [ 12 , 1]

f2(2i) for t ∈ [ 12 , 1], i ∈ [0, 12 ]

G(2i− 1, 2t− 1) for t ∈ [ 12 , 1], i ∈ [ 12 , 1]

As we have seen several times now, we can use the fact that the composition of continuous functions is

continuous as well as the Map Gluing Theorem to arrive at the conclusion that H is continuous and therefore

describes a homotopy from f1 ∗ g1 to f2 ∗ g2. Therefore, the operation on π1(X, b) is well-defined.

This homotopy may seem cryptic at first glance, but careful examination reveals that we are deforming f1∗g1
into f2 ∗ g2 by first using the homotopy F to deform f1 into f2 while leaving g1 as is, then using G to deform

g1 into g2 while leaving f2 untouched. The spacing between the cases serves to visually highlight the difference

between deforming f1 into f2 and deforming g1 into g2.

Lemma 3.6: Given a fundamental group π1(X, b), the operation [f ][g] = [f ∗ g] for all [f ], [g] ∈ π1(X, b) is

associative.

Proof. Let π1(X, b) be a fundamental group and suppose any [f ], [g], [h] ∈ π1(X, b). To show that [f ]([g][h]) =

([f ][g])[h], we shall find a homotopy from f ∗ (g ∗ h) to (f ∗ g) ∗ h. Define

H(i, t) =


f( 4i

2−t ) for 0 ≤ i ≤ 2−t
4

g(4i− 2 + t) for 2−t
4 ≤ i ≤

3−t
4

h( 4i−3+t
1+t ) for 3−t

4 ≤ s ≤ 1
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Again using the Map Gluing Theorem and the fact that the composition of continuous functions is continuous,

H is therefore continuous and describes a homotopy from f ∗(g∗h) to (f ∗g)∗h. Therefore, [f ]([g][h]) = ([f ][g])[h],

making the operation associative.

Despite this homotopy being even more cryptic than the last, it turns out to be relatively simple. Since we

do not change the order we perform f, g, and h, all we need to is change the amount of time we spend on each

function. Starting at f ∗ (g ∗ h), we trace f for the first half of time, then trace g for a quarter of the time and

we finally trace h for the final quarter of time. The homotopy then slowly shifts the time we spend on each

function in relation to t, ending with a path where we trace f for only the first quarter of time, g for the second

quarter, and we finish by tracing h for the second half. The reader should verify that this is indeed true and

that H0 = f ∗ (g ∗ h) and H1 = (f ∗ g) ∗ h.

Lemma 3.7: Given a fundamental group π1(X, b), if c : I → X is the constant map c(i) = b for all i ∈ I,

then [f ][c] = [f ] and [c][f ] = [f ] for all [f ] ∈ π1(X, b).

Proof. To prove that [f ][c] = [f ] for any [f ] ∈ π1(X, b), define

H(i, t) =

{
b for 0 ≤ t ≤ −2i+ 1

f( 2i+t−1
t+1 ) for − 2i+ 1 ≤ t ≤ 1

As per usual, we use the Map Gluing Theorem and the continuity of the composition of continuous functions

to prove that H is continuous and therefore describes a homotopy from f ∗ c to f . A similar function will

demonstrate that [c][f ] = [f ].

To intuitively describe this homotopy, we begin with a path which first traces f half the time then c the

remainder of the time. As t increases, the homotopy steadily increases the amount of time we spend tracing f

and decreases the amount of time we spend tracing c until the path traces f the entire time. Again, the reader

should verify this. The reader should also recognize that [c] acts as the identity element e of π1(X, b).

To prove the existence of inverse elements, we require some new notation. If f : I → X is a path, let

fr : I → X be the path defined by fr(i) = f(1− i) for all i ∈ I. Note that fr is essentially the path f in reverse.

Lemma 3.8: Given a fundamental group π1(X, b), if we suppose any element [f ] ∈ π1(X, b), then [f ][fr] =

[c] = [fr][f ], where c : I → X is the constant function mapping to b.

Proof. We shall find a homotopy such that f ∗ fr ∼ c. Define H : I × I → X by

H(i, t) =


b for 0 ≤ i ≤ t

2

f(2i− t) for t
2 ≤ i ≤

1
2

fr(2i+ t− 1) for 1
2 ≤ i ≤

2−t
2

b for 2−t
2 ≤ i ≤ 1

Once more, the Map Gluing Theorem and the continuity of the composition of continuous functions proves

that H is continuous and therefore describes a homotopy from f ∗ fr to c. A similar function will provide a

homotopy from fr ∗ f to c.

Intuitively, this homotopy describes how the path f ∗ fr, which traces f then retraces its steps with fr, is

essentially the same as having never left the base point at all. As t increases from 0 to 1 we steadily decrease

the distance traveled by f and retraced by fr (decreasing the time spent on them) and increase the amount of

time we spend waiting at c, which we spend waiting before we begin f and after we finish with fr. Eventually,

we end up spending all our time at c at t = 1, and travel no distance along f or fr. As usual, the reader should

verify this result, as well as recognize that [fr] = [f ]−1 in π1(X, b).
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At this point, we have proven enough results about the fundamental group that we can confirm Theorem

3.4: given a topological space X and a base point b ∈ X, π1(X, b) is indeed a group. At this point, we can begin

to use the topology we know so far to explore the nature of the fundamental group.

Example 3.9: If we let S1 = {(x, y) ∈ R2 : d((x, y), (0, 0)) = 1}, we can form a topological space on S1 as

the relative topology as a subset of R2. Then we can pick the point (1, 0) ∈ S1 and form the fundamental group

π1(S1, (1, 0)).

To understand this group on an intuitive level, recognize that the simplest non-trivial loop in π1(S1, (1, 0))

is a loop wrapped all the way around S1 once, since this loop clearly cannot be continuously deformed into

the identity of π1(S1, (1, 0)): the constant loop based at the point (1, 0). Furthermore, if we wrap the loop in

the opposite direction we “undo” the previous loop and end up with the identity. If we wrap a loop multiple

times in the same direction, we create a unique element in π1(S1, (1, 0)) with each wrap around since we cannot

continuously deform n wrappings into any fewer, or more wrappings. Additionally, if we first wrap a loop n

times around S1 then wrap it m times around in the same direction, it is as if we wrapped a loop n+m times

around. At this point, it should be clear that at least intuitively, π1(S1, (1, 0)) is isomorphic to the group Z
under addition, which in fact it is.

This is a critical result in algebraic topology, and while the proof that π1(S1, (1, 0)) ∼= Z is beyond the scope

of this paper, we will regularly cite this fact to create various examples, as well as illustrate underlying concepts

of important theorems. �

4 Nature of the Fundamental Group

Lemma 4.1: If X and Y are topological spaces, f, g : I → X are loops in X based at some point b, and

h : X → Y is continuous, then h ◦ (f ∗ g) = (h ◦ f) ∗ (h ◦ g).

Proof. By definition for all i ∈ I, if i ≤ 1
2 then h ◦ (f ∗ g)(i) = h ◦ (f(2i)) and (h ◦ f) ∗ (h ◦ g)(i) = h ◦ f(2i).

Furthermore, if i ≥ 1
2 , then h ◦ (f ∗ g)(i) = h ◦ (g(2i)) and (h ◦ f) ∗ (h ◦ g)(i) = h ◦ g(2i). Therefore, h ◦ (f ∗ g) =

(h ◦ f) ∗ (h ◦ g). Additionally, since f, g, h are all continuous, h ◦ (f ∗ g) = (h ◦ f) ∗ (h ◦ g) is therefore a loop in

Y based at h(b).

Theorem 4.2 If π1(X, b) and π1(Y, v) are the fundamental groups of X and Y based at b and v respectively,

then π1(X × Y, (b, v)) ∼= π1(X, b)× π1(Y, v).

Proof. Let X and Y be topological spaces and let b ∈ X and v ∈ Y . Define px : X × Y → X by px(α, β) = α

for all (α, β) ∈ X ×Y . Then px is continuous, since if we let U ⊆ X be open in X, then p−1x (U) = U ×Y , which

is open in X × Y by definition of the product topology. Define py : X × Y → Y in a similar manner.

Define φ : π1(X × Y, (b, v))→ π1(X, b)× p1(Y, v) by φ([f ]) = ([px ◦ f ], [py ◦ f ]) for all [f ] ∈ π1(X × Y, (b, v)).

By the nature of px and py, φ is trivially shown to be well-defined. We claim that φ is an isomorphism.

To prove that φ is a homomorphism, suppose any [f ], [g] ∈ π1(X × Y, (b, v)). Then,

φ([f ][g]) = φ([f ∗ g]) = ([px ◦ (f ∗ g)], [py ◦ (f ∗ g)])

By Lemma 4.1, we have:

= ([px ◦ f ][px ◦ g], [py ◦ f ][py ◦ g]) = ([px ◦ f ], [py ◦ f ]) ([px ◦ g], [py ◦ g]) = φ([f ])φ([g])

To prove that φ is injective, suppose any [f ], [g] ∈ π1(X×Y, (b, v)) such that [f ] = [g]. Let H : I×I → X×Y
be a homotopy from f to g. Define F = px ◦H and G = py ◦H. Since H and px and py are continuous, therefore

F and G are continuous. Furthermore, F0 = px ◦ f , F1 = px ◦ g, G0 = py ◦ f , and G1 = py ◦ g. Therefore,

[px ◦ f ] = [px ◦ g] and [py ◦ f ] = [py ◦ g], and so φ([f ]) = φ([g]).
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To prove that φ is surjective, suppose any ([f ], [g]) ∈ π1(X, b) × π1(Y, v). Define h : I → X × Y by

h(i) = (f(i), g(i)) for all i ∈ I. Clearly, px ◦h = f and py ◦h = g. Furthermore, the continuity of f and g implies

that h is continuous, and so φ([h]) = ([px ◦ h], [py ◦ h]) = ([f ], [g]).

This theorem frequently provides us with a tool to simplify the calculation of the fundamental group of a

given space, as we shall demonstrate in the next example.

Example 4.3: The surface of a torus can be expressed as the product topology S1×S1. Since we’ve already

established that π1(S1, (1, 0)) ∼= Z, Theorem 4.2 proves that the fundamental group of the surface of a torus

based at the point b = ((1, 0), (1, 0)) is therefore Z× Z. Intuitively, this can understood as having two different

kinds of loops generating the rest of the group with each loop becoming ”snagged” on either the first S1 in the

product topology or the second, as is shown in the below diagram. �

b

Theorem 4.4 If X is a path connected topological space and x ∈ X, then π1(X,x) ∼= π1(X, y) for all y ∈ X.

Proof. Let X be a path connected space and suppose x, y ∈ X. By the definition of path connectedness,

there exists some path f : I → X such that f(0) = x and f(1) = y. Define φ : π1(X,x) → π1(X, y) by

φ([g]) = [f ∗ g ∗ fr] for all [g] ∈ π1(X,x). We claim that φ is an isomorphism.

To prove that φ is well-defined, let [g], [h] ∈ π1(X,x) such that [g] = [h]. Let H be a homotopy from

g to h and let F : I × I → X by F (i, t) = f ∗ Ht ∗ fr(i). Clearly, F0 = f ∗ g ∗ fr and F1 = f ∗ h ∗ fr.
Furthermore, since H and g and f are all continuous, F is continuous. Thus, [f ∗ g ∗ fr] = [f ∗ h ∗ fr] and so,

φ([g]) = [f ∗ g ∗ fr] = [f ∗ h ∗ fr] = φ([h]).

To prove that φ is a homomorphism, suppose any [g], [h] ∈ π1(X,x). Then,

φ([g][h]) = φ([g ∗ h]) = [f ∗ g ∗ h ∗ fr] = [f ∗ g ∗ fr ∗ f ∗ h ∗ fr] = [f ∗ g ∗ fr][f ∗ h ∗ fr] = φ([g])φ([h])

To prove φ is bijective, define η : π1(X, y)→ π1(X,x) by η([g]) = [fr ∗ g ∗ f ] for all [g] ∈ π1(X, y). Then for

all [g] ∈ π1(X,x),

η(φ([g])) = η([f ∗ g ∗ fr]) = [fr ∗ f ∗ g ∗ fr ∗ f ] = [g]

and for all [g] ∈ π1(X, y),

φ(η([g])) = φ([fr ∗ g ∗ f ]) = [f ∗ fr ∗ g ∗ fr ∗ f ] = [g]

Therefore, φ−1 = η and φ thus describes an isomorphism from π1(X,x) to π1(X, y).

With this theorem in mind, if X is a path connected space we will adopt the notation of π1(X) to represent

the fundamental group of X, since the choice of a base point is irrelevant.

In addition to providing a better understanding of the underlying concepts of path connected spaces such

as S1 or the torus, this theorem also provides us the ability to pick specific base points when calculating the

fundamental group of a path connected space. This will later on allow us to take advantage of powerful theorems

which can only be applied in the context of specific base points.
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Theorem 4.5: Let X be a topological space and A ⊆ X be a subset of X with the relative topology such

that there exists a continuous map r : X → A where r|A = idA. Let iA : A ↪−→ X be the inclusion map defined

by iA(a) = a for all a ∈ A. If there exists a continuous homotopy H : X × I → X such that H0 = idX and

H1 = iA ◦ r, then if a ∈ A we have: π1(X, a) ∼= π1(A, a).

Proof. Let a ∈ A and let φ : π1(X, a)→ π1(A, a) by φ([α]) = [r ◦ α] for all [α] ∈ π1(X, a). Since r is continuous,

it is straightforward to prove that φ is a well-defined map. To prove that φ is a homomorphism, suppose any

[α], [β] ∈ π1(X, a). Then,

φ([α][β]) = φ([α ∗ β]) = [r ◦ (α ∗ β)]

Since r is continuous, by Lemma 4.1:

= [(r ◦ α) ∗ (r ◦ β)] = [r ◦ α][r ◦ β] = φ([α])φ([β])

To prove that φ is surjective, let η : π1(A, a) → π1(X, a) by η([α]) = [iA ◦ α] for all [α] ∈ π1(X, a). Then if

we let [α] ∈ π1(A, a),

φ(η([α])) = φ([iA ◦ α]) = [(r ◦ iA) ◦ α] = [α]

since r ◦ iA = r|A = idA. Therefore, η ◦ φ = idπ1(A,a), and so φ is surjective.

Furthermore, if we let [α] ∈ π1(X, a), we have

η(φ([α])) = η([r ◦ α]) = [iA ◦ r ◦ α] = [H1 ◦ α] = [α]

since H is a homotopy from idX to iA ◦ r. Therefore, φ ◦ η = idπ1(X,a) and so φ is injective. Therefore, φ is an

isomorphism.

This homotopy is known as a deformation retract. Intuitively, we are continuously deforming X into a subset

A in such a way that every path in X deforms into its homotopic equivalent in A. If such a subset exists in X,

then that subset must essentially be homotopically equivalent to X, resulting in the two spaces having the same

fundamental group.

Example 4.6: It is common knowledge that a Mobius strip can be created by taking a strip of paper,

twisting one end a half-turn, then gluing the ends together. Topologically, we create this structure by taking the

product space I×I and defining an equivalence relation ∼ where (0, x) ∼ (1, 1−x) for all (0, x), (1, 1−x) ∈ I×I
and (x, y) ∼ (x, y) for all other points (x, y). This is the topological equivalent of gluing the ends together after

a half-turn. Let X be the set of all equivalence classes of I × I and define a topology on X by letting U ⊆ X be

open in X if and only if q−1(U) is open in I × I, where q : I × I → X is a map defined by q(x, y) = [(x, y)]. The

reader should verify this is indeed a Mobius strip.

Let A = {[(x, 12 )] : x ∈ I} ⊂ X. It should be clear that because (0, 12 ) ∼ (1, 12 ), we have taken a line and

joined the endpoints together. This makes A roughly equivalent to S1, at least up to their fundamental groups

(we will later see how to do this more rigorously). Therefore, π1(A) ∼= π1(S1) ∼= Z. Using this fact, define a

function H : X × I → X by H([(x, y)], t) = [(x, y(1 − t) + t
2 )] for all [(x, y)] ∈ X. Intuitively, this map is a

continuous function which slides every point on the Mobius strip to A, as is shown in the diagram below. It is

not difficult to prove this function is well-defined, and the use of Lemma 4.1 and the fact that composition of

continuous functions is continuous proves that H is continuous and therefore a homotopy from X to A. It should

furthermore be clear that H satisfies the homotopy described in Theorem 4.4. Therefore, π1(X) ∼= π1(A) ∼= Z.

�
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I
0 1

0

1

I
1
2

A

(x ,y )

(x , )12

H

1 1

1

(x ,y )2 2

(x , )122

H

Definition 4.7: Suppose that X and Y are topological spaces. If f : X → Y is a bijective and con-

tinuous function such that f−1 is continuous, then the spaces X and Y are homeomorphic and f describes a

homeomorphism between them. �

This concept is exceedingly important in topology and is one of the critical motivators behind the study of

topological spaces. Since the open sets of a topological space define the internal structure of the space much

like how the relationships between elements define the structure of a group, a homeomorphism between spaces

is the topological equivalent of an isomorphism between groups. Naturally, since the internal structure of the

fundamental group of a space is dependent on the internal structure of that space, we question whether an

isomorphism between fundamental groups of spaces is related to homeomorphisms between those spaces. This

next theorem will help answer this question.

Theorem 4.8: Suppose X and Y are topological spaces such that f : X → Y is a homeomorphism. Then,

π1(X,x) ∼= π1(Y, f(x)) for any x ∈ X.

Proof. Let x ∈ X and define φ : π1(X,x) → π1(Y, f(x)) by φ([g]) = [f ◦ g] for all [g] ∈ π1(X,x). Since f is

continuous, it is straightforward to prove this function is well-defined. To prove that φ is a homomorphism,

suppose any [g], [h] ∈ π1(X,x). Then,

φ([g][h]) = φ([g ∗ h]) = [f ◦ (g ∗ h)]

By Lemma 4.1,

= [(f ◦ g) ∗ (f ◦ h)] = [f ◦ g][f ◦ h] = φ([g])φ([h])

Now, define η : π1(Y, f(x))→ π1(X,x) by η([g]) = [f−1◦g]. Note that we are guaranteed the inverse function

f−1 since f is a homeomorphism and is therefore bijective. In a similar manner as above, η is shown to be a

well-defined homomorphism. Furthermore, if we suppose any [g] ∈ π1(Y, f(x)) we have

φ(η([g])) = φ([f−1 ◦ g]) = [f ◦ f−1 ◦ g] = [g]

and if [g] ∈ π1(X,x), then

η(φ([g])) = η([f ◦ g]) = [f−1 ◦ f ◦ g] = [g]

Therefore, η = φ−1. Thus, φ is an isomorphism from π1(X,x) to π1(Y, f(x)).

While we have demonstrated some correspondence between the homeomorphism of topological spaces and

the isomorphism of their respective fundamental groups, the converse of Theorem 4.8 is actually false. The

simplest example of this is to consider a space X such that there exist two open, non-empty, disjoint sets of X,

A,B, such that A and B are each path-connected with no continuous path between them. If we let a ∈ A we

can see that π1(X, a) ∼= π1(A, a), but A is clearly not homeomorphic to X.

Despite this shortcoming, this theorem remains of great interest to us as it provides a valuable topological tool

for determining when two spaces are homeomorphic. In particular, the contrapositive of this theorem allows us

9



to use our knowledge of group theory to prove if two topological spaces are not homeomorphic to each other—an

oftentimes non-trivial task.

Example 4.9: Let X be the set of all points in R2 of distance less than or equal to 3
2 from the origin, and

let X have the relative topology as a subset of R2. Let A be the set of all points in R2 of distance less than 1
2

from the origin and let Y = X\A have the relative topology as a subset of R2. It should be intuitively clear that

X is not homeomorphic to Y . To prove this rigorously, however, we must use Theorem 4.8.

Considering X, we can show that π1(X) ∼= {e} by using a deformable retraction. Let r : X → {(0, 0)} be

a constant map. Under the relative topology this is clearly continuous, since the inverse image under r of any

non-empty open set in {(0, 0)} is simply X, an open set. Then we can build a homotopy H : X × I → X taking

X to {(0, 0)} by considering every point in X as a vector and letting H multiply that vector by 1 − t for all

t ∈ I. Clearly, π1({(0, 0)}) ∼= {e}, and by Theorem 4.5, therefore π1(X) ∼= {e}.
Considering Y , we will use a deformable retraction to instead show that π1(Y ) ∼= Z. Clearly, S1 ⊂ Y . If

we let r : Y → S1 by considering the elements on Y as vectors and letting r set their distance to be 1 from

the origin, it is clear that r|S1 = idS1 and it is not difficult to prove that r−1(U) is open in Y for all open sets

U ⊆ S1. Furthermore, we can create a homotopy from Y to S1 which acts like r, but instead of mapping the

elements to a distance of 1 immediately, we slowly change their distance from the origin linearly with respect to

t. By Theorem 4.5, it must be that π1(Y ) ∼= π1(S1) ∼= Z. Note that it is impossible to define an equivalent r or

H on X since they are undefined for (0, 0), highlighting why these two spaces are indeed different.

By Theorem 4.8, since π1(X)�∼=π1(Y ), X and Y are therefore not homeomorphic. �

5 The Seifert-van Kampen Theorem

So far, we have seen several methods for calculating the fundamental group of a topological space. These

methods only extend so far however, as they are generally only applicable to relatively simple spaces or spaces

which can be formed as the product of simpler spaces. In more complicated spaces which cannot be easily

represented, it is challenging to calculate the fundamental group of such a space using only the theorems we

know. This brings us to the next theorem which, despite only being applicable in certain scenarios, provides us

an immensely powerful tool for computing the fundamental group of topological spaces.

Theorem 5.1: (Seifert-van Kampen Theorem) Suppose X is a path connected space such that there

exist non-empty, path connected, open subsetsX1, X2 ofX such thatX = X1∪X2 andX0 = X1∩X2 is nonempty

and path connected. Let x0 ∈ X0, and let φ1 : π1(X0, x0) ↪−→ π1(X1, x0) and φ2 : (X0, x0) ↪−→ π1(X2, x0) be the

inclusion homomorphisms. If 〈A|RA〉 and 〈B|RB〉 are the presentations of π1(X1, x0) and π1(X2, x0) respectively,

then G = 〈A,B | RA, RA, φ1([α])φ2([α])−1 where [α] ∈ π1(X0, x0)〉 is a presentation for π1(X,x0).

We will not directly prove this theorem here as it requires more advanced topological concepts than those

discussed in this paper. Instead, we provide the commutative diagram below to illustrate this theorem. In this

diagram, the function f̃ is a naturally induced homomorphism from G to π1(X,x0) and is the primary result of

this theorem. The challenge of this theorem is proving f̃ is a bijective function and therefore an isomorphism.

For a full proof, we direct the reader to [1] or [2].

π1(X,x0)

G

π1(X1, x0) π1(X2, x0)

π1(X0, x0)

f̃

φ1 φ2
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Because of this theorem’s somewhat strict requirements, it is not always possible to use it to calculate the

fundamental group of a space. For example, we cannot use the Seifert-van Kampen Theorem to prove that

π1(S1) ∼= Z since there is no way to break S1 into two open subsets X1 and X2 such that X1 ∪ X2 = S1 and

X1 ∩X2 is path connected. Regardless, if a space meets the requirements of the theorem, the theorem proves

to be an exceptionally powerful and succinct way to calculate the fundamental group, as we will see in this next

example.

Example 4.6: Let X ⊂ R2 be the figure-eight shown in the diagram below with the relative topology and

let x0 ∈ X be as indicated on the diagram. Furthermore, let X1 and X2 be the open sets as marked below. Note

that X, X1, X2, and X0 = X1 ∩X2 are each path connected and contain x0. It should be clear that both X1

and X2 have a deformable retraction to a subset homeomorphic to S1. Therefore, by Theorem 4.5 and Theorem

4.8, π1(X1, x0) ∼= π1(S1) ∼= Z and π1(X2, x0) ∼= π1(S1) ∼= Z. Given this, let the presentations of π1(X1, x0) and

π1(X2, x0) be 〈a|〉 and 〈b|〉 respectively. Note that neither presentation has any relations apart from e.

ConsideringX0, it is apparent thatX0 has a deformable retraction to the subset {x0}. Therefore, π1(X0, x0) ∼=
{e}. Then given φ1 and φ2 as defined in the Seifert-van Kampen Theorem, the set of relators {φ1([α])φ2([α])−1

where [α] ∈ π1(X0, x0)} = {e}. Therefore, by the Seifert-van Kampen theorem, π1(X,x0) ∼= 〈a, b〉. �

x0
X

X1 X2

X0

6 Conclusion

In this paper, we have demonstrated how using only the most elementary definitions and concepts in point-set

topology we can construct an entirely new methodology for studying and classifying topological spaces through

the application of group theory. As we have seen, however, we cannot completely classify topological spaces up to

homeomorphism through their fundamental groups alone. The fundamental group itself is only the first of what

are called the homotopy groups in algebraic topology, which themselves are only one component of algebraic

topology.

We hope this paper has provided the reader with an understanding of the fundamental group and why it is

so important to algebraic topology, as well as enabled the reader’s further exploration in point-set topology and

algebraic topology.
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