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The Hamiltonian Quaternions

The Hamiltonion quaternions H are a system of numbers
devised by William Hamilton in 1843 to describe three
dimensional rotations.

q = a + bi + cj + dk where i2 = j2 = k2 = ijk = −1

non-abelian multiplication
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Conjugation and Norms

Conjugation in the Hamiltonian quaternions is defined as
follows: if q = a + bi + cj + dk then q = a− bi − cj − dk.

The norm is defined by
N(q) = qq = qq = a2 + b2 + c2 + d2.
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Properties

Some important properties of the conjugate and norm.

q = q

q1 + q2 = q1 + q2

q1q2 = q2 q1

Elements with nonzero norms have multiplicative inverses
of the form q

N(q) .

The norm preserves multiplication

N(q1q2) = q1q2q1q2 = q1q2q2 q1 = q1N(q2)q1

= N(q2)q1q1 = N(q2)N(q1)
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Definition of an Algebra

An algebra over a field is a vector space over that field together
with a notion of vector multiplication.
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Generalizing the Quaternions

The Hamiltonian quaternions become a prototype for the more
general class of quaternion algebras over fields. Defined as
follows:

A quaternion algebra (a, b)F with a, b ∈ F is defined by
{x0 + x1i + x2j + x3k |i2 = a, j2 = b, ij = k = −ji , xi ∈ F}.
Under this definition we can see that H = (−1,−1)R since

k2 = (ij)2 = ijij = −iijj = −(−1)(−1) = −1

Note: We will always assume that char(F ) 6= 2.
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Generalizing Conjugates and Norms

Conjugation works the same q = x0 − x1i − x2j − x3k

The Norm is defined as
N(q) = qq = qq = x20 − ax21 − bx22 + abx23 , it still
preserves multiplication.

Inverse elements are still defined as q
N(q) for elements with

nonzero norms.
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The Split Quaternions

The split-quaternions are the quaternion algebra (1,−1)R.

Allows for zero divisors and nonzero elements with zero
norms

(1 + i)(1− i) = 1 + i − i − 1 = 0
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Isomorphisms of quaternion Algebras

An isomorphism between quaternion algebras is a ring
isomorphism that fixes the ”scalar term”.

For example:

1→
[

1 0
0 1

]
, i →

[
0 1
a 0

]
, j →

[
1 0
0 −1

]
, k →

[
0 −1
a 0

]
is an isomorphism from any quaternion algebra (a, 1)F to
M2(F ) the algebra of 2× 2 matrices over F .
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Quaternionic Bases

A quaternionic basis is a set {1, e1, e2, e1e2} where e21 ∈ F ,
e22 ∈ F , e21 , e

2
2 6= 0, and e1e2 = −e2e1.

Isomorphisms between quaternion algebras can be determined
through the construction of quaternionic bases. If you can
construct bases in two algebras such that the values of e21 and
e22 are equal, then those algebras are isomorphic to one
another.

This shows tha (a, b)F , (b, a)F , (a,−ab)F and all similar
permutations of a, b, and−ab produce isomorphic algebras.
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Important Categories of Isomorphism

(a, b2)F ∼= M2(F )

Since an isomorphism exists:

1→
[

1 0
0 1

]
, i →

[
0 1
a 0

]
, j →

[
b 0
0 −b

]
, k →

[
0 −b
ab 0

]
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Important Categories of Isomorphism Cont.

(a, b)F ∼= M2(F ) if b = x2 − ay2 for x , y ∈ F
To show this we construct a basis {1, i , jx + ky , (i)(jx + ky)},
this is clearly a basis of (a, b)F and since

(jx + ky)2 = j2x2 + jkxy + kjxy + k2y2

= bx2 − aby2 = b(x2 − ay2) = b2

It is also a basis of (a, b2)F so
(a, x2 − ay2)F ∼= (a, b2)F ∼= M2(F ).
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The Norm Subgroup

Elements of a field of the form x2 − ay2 for a given a form a
group under multiplication known as the norm subgroup
associated to a or Na.

1 = 12 − a02

(x2 − ay2)(w2 − az2) = (xw + ayz)2 − a(xz + wy)2

1

x2 + ay2
=

x2 + ay2

(x2 + ay2)2
=

x

x2 + ay2
2
− a

y

x2 + ay2
2
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Real Quaternion Algebras

Theorem: There are only two distinct quaternion algebras over
R which are H and M2(R).
Proof:

Given (a, b)R if a, b < 0 then we can construct a basis
{1,
√
−ai ,

√
−bj ,

√
abij} in H which forms a basis of

(a, b)R indicating the existence of an isomorphism.

If a > 0, b < 0 WLOG, we can construct a basis
{1,
√
ai ,
√
−bj ,

√
−abij} in the (1,−1)R which forms a

basis of (a, b)F indicating the existence of an isomorphism
with the split-quaternions and therefore M2(F ).
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Complex Quaternion Algebras

Theorem: There is only one quaternion algebra over C, which
is M2(C).
Proof:

We’ve shown that (a, b2)F ∼= M2(F ). We can find always
find a c ∈ C such that c2 = b, therefore
(a, b)C ∼= (a, c2)C ∼= M2(C).
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Categorizing Quaternion Algebras

Theorem: All quaternion algebras that are not division rings
are isomorphic to M2(F )
Proof: Take a quaternion algebra A = (a, b)F

If a = c2 or b = c2 for some c ∈ F then A ∼= M2(F ), now
assume neither a nor b are squares.

If A isn’t a division ring then there must be some nonzero
element without a multiplicative inverse. We will show
that b = x2 − ay2 and therefore (a, b)F ∼= M2(F ).
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Categorizing Quaternion Algebras Cont.

The only elements without inverses are those with
N(q) = x21 − ax22 − bx23 + abx24 = 0

x21 − ax22 = b(x23 − ax24 )

x23 − ax24 6= 0 since either x3 = x4 = 0 or a =
x23
x24

. If

x3 = x4 = 0 then either x1 = x2 = 0 or a =
x21
x22

. All of

which are contradictions.

So b =
x21−ax22
x23−ax24

, therefore b = x2 − ay2 by closure of Na so

A ∼= M2(F ).
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Rational Quaternion Algebras

It can be shown that there are infinite distinct quaternion
algebras over Q. By the previous theorem all but M2(Q) must
be division rings.
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The Octonions

The octonions are another set of numbers, discovered
independantly by John T. Graves and Arthur Cayley in 1843,
which are of the form:

o = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7

Multiplication neither commutative nor associative

Obeys the Moufang Identity (z(x(zy))) = (((zx)z)y),
weaker than associativity but behaves similarly.

Conjugation behaves the same.

Norm still preserves multiplication.
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The Fano Plane

Figure: The Fano plane
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Generalizing Octonion Algebras

Much as quaternion algebras can be described by (a, b)F
octonion algebras can be described by three of their seven in
the form (a, b, c)F .

(−1,−1,−1)R are Graves’ octonions

(1, 1, 1)R are the split-octonions

these are the only two octonion algebras over R
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Zorn Vector-Matrices

Unlike the quaternions, octonions and by extension octonion
algebras cannot be expressed as matrices since matrix
multiplication is associative. German mathematician Max
August Zorn created a system called a vector-matrix algebra
which could be used to describe them.

[
a u
v b

] [
c w
x d

]
=

[
ac + u · x aw + du− v × x

cv + bx + u×w bd + v ·w

]
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Other Notes on Octonion Algebras

Two complex elements that are not scalar multiples of
one-another generate a quaternion subalgebra.

Information about isomorphisms is less readily available,
it’s clear that some of the same principles apply but with
added difficulty.

Sedenion algebras (16-dimensional) and above cease being
composition algebras.
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Questions?


