Quaternion Algebras

Edgar Elliott

May 1, 2016

The Hamiltonian Quaternions

The Hamiltonion quaternions \mathbb{H} are a system of numbers devised by William Hamilton in 1843 to describe three dimensional rotations.

- $q=a+b i+c j+d k$ where $i^{2}=j^{2}=k^{2}=i j k=-1$
- non-abelian multiplication

Conjugation and Norms

- Conjugation in the Hamiltonian quaternions is defined as follows: if $q=a+b i+c j+d k$ then $\bar{q}=a-b i-c j-d k$.
- The norm is defined by

$$
N(q)=q \bar{q}=\bar{q} q=a^{2}+b^{2}+c^{2}+d^{2} .
$$

Properties

Some important properties of the conjugate and norm.

- $\overline{\bar{q}}=q$
- $\overline{q_{1}+q_{2}}=\overline{q_{1}}+\overline{q_{2}}$
- $\overline{q_{1} q_{2}}=\overline{q_{2}} \overline{q_{1}}$
- Elements with nonzero norms have multiplicative inverses of the form $\frac{\bar{q}}{N(q)}$.
- The norm preserves multiplication

$$
\begin{aligned}
N\left(q_{1} q_{2}\right) & =q_{1} q_{2} \overline{q_{1} q_{2}}=q_{1} q_{2} \overline{q_{2}} \overline{q_{1}}=q_{1} N\left(q_{2}\right) \overline{q_{1}} \\
& =N\left(q_{2}\right) q_{1} \overline{q_{1}}=N\left(q_{2}\right) N\left(q_{1}\right)
\end{aligned}
$$

Definition of an Algebra

Quaternion
Algebras
Edgar Elliott

An algebra over a field is a vector space over that field together with a notion of vector multiplication.

Generalizing the Quaternions

The Hamiltonian quaternions become a prototype for the more general class of quaternion algebras over fields. Defined as follows:

- A quaternion algebra $(a, b)_{F}$ with $a, b \in F$ is defined by

$$
\left\{x_{0}+x_{1} i+x_{2} j+x_{3} k \mid i^{2}=a, j^{2}=b, i j=k=-j i, x_{i} \in F\right\} .
$$

- Under this definition we can see that $\mathbb{H}=(-1,-1)_{\mathbb{R}}$ since

$$
k^{2}=(i j)^{2}=i j i j=-i i j j=-(-1)(-1)=-1
$$

- Note: We will always assume that $\operatorname{char}(F) \neq 2$.

Generalizing Conjugates and Norms

- Conjugation works the same $\bar{q}=x_{0}-x_{1} i-x_{2} j-x_{3} k$
- The Norm is defined as $N(q)=\bar{q} q=q \bar{q}=x_{0}^{2}-a x_{1}^{2}-b x_{2}^{2}+a b x_{3}^{2}$, it still preserves multiplication.
- Inverse elements are still defined as $\frac{\bar{q}}{N(q)}$ for elements with nonzero norms.

The Split Quaternions

The split-quaternions are the quaternion algebra $(1,-1)_{\mathbb{R}}$.

- Allows for zero divisors and nonzero elements with zero norms

$$
(1+i)(1-i)=1+i-i-1=0
$$

Isomorphisms of quaternion Algebras

Quaternion
Algebras
Edgar Elliott

An isomorphism between quaternion algebras is a ring isomorphism that fixes the "scalar term".

- For example:

$$
1 \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], i \rightarrow\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right], j \rightarrow\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], k \rightarrow\left[\begin{array}{cc}
0 & -1 \\
a & 0
\end{array}\right]
$$

is an isomorphism from any quaternion algebra $(a, 1)_{F}$ to $M_{2}(F)$ the algebra of 2×2 matrices over F.

Quaternionic Bases

A quaternionic basis is a set $\left\{1, e_{1}, e_{2}, e_{1} e_{2}\right\}$ where $e_{1}^{2} \in F$, $e_{2}^{2} \in F, e_{1}^{2}, e_{2}^{2} \neq 0$, and $e_{1} e_{2}=-e_{2} e_{1}$.
Isomorphisms between quaternion algebras can be determined through the construction of quaternionic bases. If you can construct bases in two algebras such that the values of e_{1}^{2} and e_{2}^{2} are equal, then those algebras are isomorphic to one another.

- This shows tha $(a, b)_{F},(b, a)_{F},(a,-a b)_{F}$ and all similar permutations of a, b, and $-a b$ produce isomorphic algebras.

Important Categories of Isomorphism

- $\left(a, b^{2}\right)_{F} \cong M_{2}(F)$
- Since an isomorphism exists:

$$
1 \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], i \rightarrow\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right], j \rightarrow\left[\begin{array}{cc}
b & 0 \\
0 & -b
\end{array}\right], k \rightarrow\left[\begin{array}{cc}
0 & -b \\
a b & 0
\end{array}\right]
$$

Important Categories of Isomorphism Cont.

$(a, b)_{F} \cong M_{2}(F)$ if $b=x^{2}-a y^{2}$ for $x, y \in F$
To show this we construct a basis $\{1, i, j x+k y,(i)(j x+k y)\}$, this is clearly a basis of $(a, b)_{F}$ and since

$$
\begin{gathered}
(j x+k y)^{2}=j^{2} x^{2}+j k x y+k j x y+k^{2} y^{2} \\
=b x^{2}-a b y^{2}=b\left(x^{2}-a y^{2}\right)=b^{2}
\end{gathered}
$$

It is also a basis of $\left(a, b^{2}\right)_{F}$ so
$\left(a, x^{2}-a y^{2}\right)_{F} \cong\left(a, b^{2}\right)_{F} \cong M_{2}(F)$.

The Norm Subgroup

Quaternion
Algebras
Edgar Elliott

Elements of a field of the form $x^{2}-a y^{2}$ for a given a form a group under multiplication known as the norm subgroup associated to a or N_{a}.

- $1=1^{2}-a 0^{2}$
- $\left(x^{2}-a y^{2}\right)\left(w^{2}-a z^{2}\right)=(x w+a y z)^{2}-a(x z+w y)^{2}$
-

$$
\frac{1}{x^{2}+a y^{2}}=\frac{x^{2}+a y^{2}}{\left(x^{2}+a y^{2}\right)^{2}}={\frac{x}{x^{2}+a y^{2}}}^{2}-a{\frac{y}{x^{2}+a y^{2}}}^{2}
$$

Real Quaternion Algebras

Theorem: There are only two distinct quaternion algebras over \mathbb{R} which are \mathbb{H} and $M_{2}(\mathbb{R})$.
Proof:

- Given $(a, b)_{\mathbb{R}}$ if $a, b<0$ then we can construct a basis $\{1, \sqrt{-a} i, \sqrt{-b} j, \sqrt{a b} i j\}$ in \mathbb{H} which forms a basis of $(a, b)_{\mathbb{R}}$ indicating the existence of an isomorphism.
- If $a>0, b<0$ WLOG, we can construct a basis $\{1, \sqrt{a} i, \sqrt{-b} j, \sqrt{-a b} i j\}$ in the $(1,-1)_{\mathbb{R}}$ which forms a basis of $(a, b)_{F}$ indicating the existence of an isomorphism with the split-quaternions and therefore $M_{2}(F)$.

Complex Quaternion Algebras

Theorem: There is only one quaternion algebra over \mathbb{C}, which is $M_{2}(\mathbb{C})$.
Proof:

- We've shown that $\left(a, b^{2}\right)_{F} \cong M_{2}(F)$. We can find always find a $c \in \mathbb{C}$ such that $c^{2}=b$, therefore $(a, b)_{\mathbb{C}} \cong\left(a, c^{2}\right)_{\mathbb{C}} \cong M_{2}(\mathbb{C})$.

Categorizing Quaternion Algebras

Theorem: All quaternion algebras that are not division rings are isomorphic to $M_{2}(F)$
Proof: Take a quaternion algebra $A=(a, b)_{F}$

- If $a=c^{2}$ or $b=c^{2}$ for some $c \in F$ then $A \cong M_{2}(F)$, now assume neither a nor b are squares.
- If A isn't a division ring then there must be some nonzero element without a multiplicative inverse. We will show that $b=x^{2}-a y^{2}$ and therefore $(a, b)_{F} \cong M_{2}(F)$.

Categorizing Quaternion Algebras Cont.

- The only elements without inverses are those with $N(q)=x_{1}^{2}-a x_{2}^{2}-b x_{3}^{2}+a b x_{4}^{2}=0$
- $x_{1}^{2}-a x_{2}^{2}=b\left(x_{3}^{2}-a x_{4}^{2}\right)$
- $x_{3}^{2}-a x_{4}^{2} \neq 0$ since either $x_{3}=x_{4}=0$ or $a=\frac{x_{3}^{2}}{x_{4}^{2}}$. If $x_{3}=x_{4}=0$ then either $x_{1}=x_{2}=0$ or $a=\frac{x_{1}^{2}}{x_{2}^{2}}$. All of which are contradictions.
- So $b=\frac{x_{1}^{2}-a x_{2}^{2}}{x_{3}^{2}-a x_{4}^{2}}$, therefore $b=x^{2}-a y^{2}$ by closure of N_{a} so $A \cong M_{2}(F)$.

Rational Quaternion Algebras

It can be shown that there are infinite distinct quaternion algebras over \mathbb{Q}. By the previous theorem all but $M_{2}(\mathbb{Q})$ must be division rings.

The Octonions

The octonions are another set of numbers, discovered independantly by John T. Graves and Arthur Cayley in 1843, which are of the form:

$$
o=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}+a_{5} e_{5}+a_{6} e_{6}+a_{7} e_{7}
$$

- Multiplication neither commutative nor associative
- Obeys the Moufang Identity $(z(x(z y)))=(((z x) z) y)$, weaker than associativity but behaves similarly.
- Conjugation behaves the same.
- Norm still preserves multiplication.

The Fano Plane

Quaternion

Algebras

Edgar Elliott

Figure: The Fano plane

Generalizing Octonion Algebras

Much as quaternion algebras can be described by $(a, b)_{F}$ octonion algebras can be described by three of their seven in the form $(a, b, c)_{F}$.

- $(-1,-1,-1)_{\mathbb{R}}$ are Graves' octonions
- $(1,1,1)_{\mathbb{R}}$ are the split-octonions
- these are the only two octonion algebras over \mathbb{R}

Zorn Vector-Matrices

Unlike the quaternions, octonions and by extension octonion algebras cannot be expressed as matrices since matrix multiplication is associative. German mathematician Max August Zorn created a system called a vector-matrix algebra which could be used to describe them.

$$
\left[\begin{array}{ll}
a & \mathbf{u} \\
\mathbf{v} & b
\end{array}\right]\left[\begin{array}{ll}
c & \mathbf{w} \\
\mathbf{x} & d
\end{array}\right]=\left[\begin{array}{cc}
a c+\mathbf{u} \cdot \mathbf{x} & a \mathbf{w}+d \mathbf{u}-\mathbf{v} \times \mathbf{x} \\
c \mathbf{v}+b \mathbf{x}+\mathbf{u} \times \mathbf{w} & b d+\mathbf{v} \cdot \mathbf{w}
\end{array}\right]
$$

Other Notes on Octonion Algebras

- Two complex elements that are not scalar multiples of one-another generate a quaternion subalgebra.
- Information about isomorphisms is less readily available, it's clear that some of the same principles apply but with added difficulty.
- Sedenion algebras (16-dimensional) and above cease being composition algebras.

Questions?

Quaternion
 Algebras

Edgar Elliott

