Partial, Total, and Lattice Orders in Group Theory

Hayden Harper

Department of Mathematics and Computer Science University of Puget Sound

May 3, 2016

Orders

- A relation on a set X is a subset of $X \times X$
- A partial order is reflexive, transitive, and antisymmetric
- A *total order* is dichotomous (either $x \leq y$ or $y \leq$ for all $x, y \in X$)
- In a *lattice-order*, every pair or elements has a least upper bound and greatest lower bound

Orders and Groups

Definition

Let G be a group that is also a poset with partial order \leq . Then G is a *partially ordered group* if whenever $g \leq h$ and $x, y \in G$, then $xgy \leq xhy$. This property is called *translation-invariant*. We call G a *po-group*.

Orders and Groups

Definition

Let G be a group that is also a poset with partial order \leq . Then G is a *partially ordered group* if whenever $g \leq h$ and $x, y \in G$, then $xgy \leq xhy$. This property is called *translation-invariant*. We call G a *po-group*.

- Similarly, a po-group whose partial order is a lattice-order is an $\mathcal{L}\text{-}\textsc{group}$

Orders and Groups

Definition

Let G be a group that is also a poset with partial order \leq . Then G is a *partially ordered group* if whenever $g \leq h$ and $x, y \in G$, then $xgy \leq xhy$. This property is called *translation-invariant*. We call G a *po-group*.

- Similarly, a po-group whose partial order is a lattice-order is an $\mathcal{L}\text{-}\textsc{group}$
- If the order is total then G is an ordered group

Example

The additive groups of $\mathbb{Z},\mathbb{R},$ and \mathbb{Q} are all ordered groups under the usual ordering of less than or equal to.

Example

The additive groups of $\mathbb{Z},\mathbb{R},$ and \mathbb{Q} are all ordered groups under the usual ordering of less than or equal to.

Example

Let **V** be a vector space over the rationals, with basis $\{\mathbf{b}_i : i \in I\}$. Let $\mathbf{v}, \mathbf{w} \in \mathbf{V}$, with $\mathbf{v} = \sum_{i \in I} p_i \mathbf{b}_i$ and $\mathbf{w} = \sum_{i \in I} q_i \mathbf{b}_i$. Define $\mathbf{v} \leq \mathbf{w}$ if and only if $q_i \leq r_i$ for all $i \in I$. Then **V** is a \mathcal{L} -group.

Example

Let G be any group. Then G is *trivially ordered* if we define the order \leq by $g \leq h$ if and only if g = h. With this order, then G is a partially ordered group.

Example

Let G be any group. Then G is *trivially ordered* if we define the order \leq by $g \leq h$ if and only if g = h. With this order, then G is a partially ordered group.

Example

Every subgroup H of a partially ordered group G is a partially ordered group itself, where H inherits the partial order from G. The same is true for subgroups of ordered groups. Note that a subgroup of a \mathcal{L} -group is not necessarily a \mathcal{L} -group.

Proposition

Let G be a po-group. Then $g \leq h$ if and only if $h^{-1} \leq g^{-1}$

Proof.

If $g \leq h$, then $h^{-1}gg^{-1} \leq h^{-1}hg^{-1}$, since G is a po-group.

Proposition

Let G be a po-group. Then $g \leq h$ if and only if $h^{-1} \leq g^{-1}$

Proof.

If $g \leq h$, then $h^{-1}gg^{-1} \leq h^{-1}hg^{-1}$, since G is a po-group.

Proposition

Let G be a po-group and $g, h \in G$. If $g \vee h$ exists, then so does $g^{-1} \wedge h^{-1}$. Furthermore, $g^{-1} \wedge h^{-1} = (g \vee h)^{-1}$

Proof.

Since
$$g \leq g \lor h$$
, it follows that $(g \lor h)^{-1} \leq g^{-1}$. Similarly,
 $(g \lor h)^{-1} \leq h^{-1}$. If $f \leq g^{-1}, h^{-1}$, then $g, h \leq f^{-1}$. Then $g, h \leq f^{-1}$, and
so $g \lor h \leq f^{-1}$. Therefore, $f \leq (g \lor h)^{-1}$. Then by definition,
 $g^{-1} \land h^{-1} = (g \lor h)^{-1}$.

Proposition

Let G be a po-group. Then $g \preceq h$ if and only if $h^{-1} \preceq g^{-1}$

Proof.

If $g \leq h$, then $h^{-1}gg^{-1} \leq h^{-1}hg^{-1}$, since G is a po-group.

Proposition

Let G be a po-group and $g, h \in G$. If $g \vee h$ exists, then so does $g^{-1} \wedge h^{-1}$. Furthermore, $g^{-1} \wedge h^{-1} = (g \vee h)^{-1}$

Proof.

Since
$$g \leq g \lor h$$
, it follows that $(g \lor h)^{-1} \leq g^{-1}$. Similarly,
 $(g \lor h)^{-1} \leq h^{-1}$. If $f \leq g^{-1}, h^{-1}$, then $g, h \leq f^{-1}$. Then $g, h \leq f^{-1}$, and
so $g \lor h \leq f^{-1}$. Therefore, $f \leq (g \lor h)^{-1}$. Then by definition,
 $g^{-1} \land h^{-1} = (g \lor h)^{-1}$.

• Using duality, we could state and prove a similar result by interchanging \vee and \wedge

H. Harper (UPS)

- In a po-group G, the set P = {g ∈ G : e ≤ g} = G⁺ is called the positive cone of G
- The elements of P are the positive elements of G

- In a po-group G, the set P = {g ∈ G : e ≤ g} = G⁺ is called the positive cone of G
- The elements of P are the *positive elements* of G
- The set $P^{-1} = G^{-}$ is called the *negative cone* of G
- Positive cones determine everything about the order properties of a po-group

Po-Groups

 In any group G, the existence of a positive cone determines an order on G (g ≤ h if hg⁻¹ ∈ P)

Proposition

A group G can be partially ordered if and only if there is a subset P of G such that:

1. $PP \subseteq P$ 2. $P \cap P^{-1} = e$ 3. If $p \in P$, then $gpg^{-1} \in P$ for all $g \in G$.

Po-Groups

 In any group G, the existence of a positive cone determines an order on G (g ≤ h if hg⁻¹ ∈ P)

Proposition

A group G can be partially ordered if and only if there is a subset P of G such that:

- 1. $PP \subseteq P$
- 2. $P \cap P^{-1} = e$
- 3. If $p \in P$, then $gpg^{-1} \in P$ for all $g \in G$.
 - If, additionally, $P \cup P^{-1}$, then G can be totally ordered

\mathcal{L} -groups

• The lattice is always distributive in an \mathcal{L} -group

Theorem

If G is an \mathcal{L} -group, then the lattice of G is distributive. In other words, $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and $a \land (b \lor c) = (a \land b) \lor (a \land c)$, for all $a, b, c, \in G$.

\mathcal{L} -groups

• The lattice is always distributive in an \mathcal{L} -group

Theorem

If G is an \mathcal{L} -group, then the lattice of G is distributive. In other words, $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and $a \land (b \lor c) = (a \land b) \lor (a \land c)$, for all $a, b, c, \in G$.

• Note that any lattice that satisfies the implication

If
$$a \wedge b = a \wedge c$$
 and $a \vee b = a \vee c$ imply $b = c$

is distributive

Definition

For an \mathcal{L} -group G, and for $g \in G$:

- 1. The *positive part* of g, g_+ , is $g \vee e$.
- 2. The *negative part* of g, g_- , is $g^{-1} \vee e$.
- 3. The absolute value of g, |g|, is g_+g_- .

Definition

For an \mathcal{L} -group G, and for $g \in G$:

- 1. The *positive part* of g, g_+ , is $g \vee e$.
- 2. The *negative part* of g, g_- , is $g^{-1} \vee e$.
- 3. The absolute value of g, |g|, is g_+g_- .

Proposition

Let G be an \mathcal{L} -group and let $g \in G$. Then $g = g_+(g_-)^{-1}$

Definition

For an \mathcal{L} -group G, and for $g \in G$:

- 1. The *positive part* of g, g_+ , is $g \vee e$.
- 2. The negative part of g, g_- , is $g^{-1} \lor e$.
- 3. The absolute value of g, |g|, is g_+g_- .

Proposition

Let G be an \mathcal{L} -group and let $g \in G$. Then $g = g_+(g_-)^{-1}$

Proof.

$$gg_-=g(g^{-1}ee e)=eee g=g_+.$$
 So, $g=g_+(g_-)^{-1}$,

• We have the Triangle Inequality with \mathcal{L} -groups

Theorem (The Triangle Inequality) Let G be an \mathcal{L} -group. Then for all $g, h \in G$, $|gh| \leq |g||h||g|$.

- \bullet We have the Triangle Inequality with $\mathcal L\text{-}\mathsf{groups}$
- Theorem (The Triangle Inequality) Let G be an \mathcal{L} -group. Then for all $g, h \in G$, $|gh| \prec |g||h||g|$.
 - If we require that the elements of *G* commute, then we recover the more traditional Triangle Inequality with two terms

• We can characterize abelian *L*-groups using a modified Triangle Inequality

Theorem

Let G be an \mathcal{L} -group. Then G is abelian if and only if for all pairs of elements $g, h \in G$, $|gh| \leq |g||h|$.

• We can characterize abelian *L*-groups using a modified Triangle Inequality

Theorem

Let G be an \mathcal{L} -group. Then G is abelian if and only if for all pairs of elements $g, h \in G$, $|gh| \leq |g||h|$.

• This result comes from showing the the positive cone, G^+ , is abelian

- If G and H are po-sets and $f : G \to H$ is a function then if whenever $g_1 \leq g_2$ for $g_1, g_2 \in G$, then $f(g_1) \leq f(g_2)$ in H, then f is order preserving
- f is called an ordermorphism.

- If G and H are po-sets and $f : G \to H$ is a function then if whenever $g_1 \leq g_2$ for $g_1, g_2 \in G$, then $f(g_1) \leq f(g_2)$ in H, then f is order preserving
- f is called an ordermorphism.
- If G and H are lattices then f is a *lattice homomorphism* if for all $g_1, g_2 \in G$, $f(g_1 \vee g_2) = f(g_1) \vee f(g_2)$, and $f(g_1 \wedge g_2) = f(g_1) \wedge (g_2)$
- If f is additionally bijective then f is a *lattice isomorphism*

- If G and H are po-sets and $f : G \to H$ is a function then if whenever $g_1 \leq g_2$ for $g_1, g_2 \in G$, then $f(g_1) \leq f(g_2)$ in H, then f is order preserving
- f is called an ordermorphism.
- If G and H are lattices then f is a *lattice homomorphism* if for all $g_1, g_2 \in G$, $f(g_1 \vee g_2) = f(g_1) \vee f(g_2)$, and $f(g_1 \wedge g_2) = f(g_1) \wedge (g_2)$
- If f is additionally bijective then f is a *lattice isomorphism*
- If f is a lattice homomorphism then it is also an ordermorphism
- If f is a lattice isomorphism then f^{-1} is a also a lattice isomorphism
- The set of all lattice automorphisms of a lattice G forms a group under composition of functions

- If G and H are \mathcal{L} -groups and σ is both a lattice homomorphism and a group homomorphism, then σ is an \mathcal{L} -homomorphism
- $\bullet\,$ The three Isomorphism Theorems translate nicely for $\mathcal L\text{-homomorphisms}$

- A *sublattice* of a lattice *L* is a subset *S* such that *S* is also a lattice with the ordering inherited from *L*
- A subgroup of S of an L-group G is an L-subgroup if S is also a sublattice of G

- A *sublattice* of a lattice *L* is a subset *S* such that *S* is also a lattice with the ordering inherited from *L*
- A subgroup of S of an L-group G is an L-subgroup if S is also a sublattice of G
- If A is an \mathcal{L} -subgroup of B which is an \mathcal{L} -subgroup of G which is an \mathcal{L} -group, then A is an \mathcal{L} -subgroup of G
- The intersection of \mathcal{L} -subgroups is again an \mathcal{L} -subgroup
- The kernel of an \mathcal{L} -homomorphism is an \mathcal{L} -subgroup

• With orders on a group, we can describe different subgroups

Definition

A subset S of a po-group G is *convex* if whenever $s, t \in S$ and $s \leq g \leq t$ in G, then $g \in S$.

• With orders on a group, we can describe different subgroups

Definition

A subset S of a po-group G is *convex* if whenever $s, t \in S$ and $s \leq g \leq t$ in G, then $g \in S$.

• This gives rise to *convex subgroups* of po-groups and *convex* \mathcal{L} -subgroups of \mathcal{L} -groups

Coset Orderings

• With convex subgroups we can define coset orderings

Definition

Let G be a po-group with partial order \leq and S a convex subgroup of G. Let $\mathcal{R}(S)$ be the set of right cosets of S in G. On $\mathcal{R}(S)$, define $Sx \leq Sy$ if there exists an $s \in S$ such that $sy \leq x$, for $x, y \in G$. Then \leq is a partial ordering on $\mathcal{R}(S)$, and it is called the *coset ordering* of $\mathcal{R}(S)$.

Coset Orderings

• With convex subgroups we can define coset orderings

Definition

Let G be a po-group with partial order \leq and S a convex subgroup of G. Let $\mathcal{R}(S)$ be the set of right cosets of S in G. On $\mathcal{R}(S)$, define $Sx \leq Sy$ if there exists an $s \in S$ such that $sy \leq x$, for $x, y \in G$. Then \leq is a partial ordering on $\mathcal{R}(S)$, and it is called the *coset ordering* of $\mathcal{R}(S)$.

- This is the *right* coset ordering
- An entirely similar definition may be made for left cosets

Coset Orderings

• With convex subgroups we can define coset orderings

Definition

Let G be a po-group with partial order \leq and S a convex subgroup of G. Let $\mathcal{R}(S)$ be the set of right cosets of S in G. On $\mathcal{R}(S)$, define $Sx \leq Sy$ if there exists an $s \in S$ such that $sy \leq x$, for $x, y \in G$. Then \leq is a partial ordering on $\mathcal{R}(S)$, and it is called the *coset ordering* of $\mathcal{R}(S)$.

- This is the *right* coset ordering
- An entirely similar definition may be made for left cosets

Theorem

Let G be a \mathcal{L} -group. Then a subgroup S of G is a convex \mathcal{L} -subgroup if and only if $\mathcal{R}(S)$ is a distributive lattice under the coset ordering.

H. Harper (UPS)

References

- Darnel, Michael R. Theory of Lattice-ordered Groups. New York: Marcel Dekker Inc., 1995.
- [2] Glass, A. M. W. Partially Ordered Groups. River Edge: World Scientific, 1999.
- [3] Holland, W. Charles. *Ordered Groups and Infinite Permutation Groups*. Dordrecht: Kluwer Academic Publishers, 1996.
- [4] Schwartz, Niels, and Madden, James J. Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings. New York: Springer, 1999.
- [5] Steinberg, Stuart A. Lattice-ordered Rings and Modules. New York: Springer, 2010.