Explorations of the Rubik's Cube Group

Zeb Howell

May 2016

What's the Deal with Rubik's Cubes?

- One Cube made up of twenty six subcubes called "cubelets".
- Each cubelet has one, two, or three "facelets".
- Three kinds of cubelet, defined by their number of facelets:

1. Six cubelets with one facelet: Center cubelets
2. Twelve cubelets with two facelets: Edge cubelets
3. Eight cubelets with three facelets: Corner cubelets

- $12!\times 8!\times 3^{8} \times 2^{12}$ combinations.
- Not all these combinations can be reached!
- (Call this the Illegal Cube Group)

The Cube Group

Let the Cube Group G be the subgroup of S_{48} generated by:

$$
\begin{aligned}
& \mathrm{R}=(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28) \\
& \mathrm{L}=(1,17,41,40)(4,20,44,37)(6,22,46,35)(9,11,16,14)(10,13,15,12) \\
& \mathrm{D}=(14,22,30,38)(15,23,31,39)(16,24,32,40)(41,43,48,46)(42,45,47,44) \\
& \mathrm{F}=(6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20) \\
& \mathrm{U}=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19) \\
& \mathrm{B}=(1,14,48,27)(2,12,47,29)(3,9,46,32)(33,35,40,38)(34,37,39,36)
\end{aligned}
$$

Only even permutations!

Edges and Corners

Consider the set of cubelets C, and let the Cube Group act on C.

- Two orbits, $C_{\text {corners }}$ and $C_{\text {edges }}$.
- Let P be the group induced by the action of G on C. Then:

1. P is the combination of all edge permutations and corner permutations.
2. P is a subset of $\left(S_{8} \times S_{12}\right) \cap A_{20}$
3. P contains $A_{8} \times A_{12}$
4. P has order $\frac{1}{2} \times 8!\times 12$!

Orientations and Positions

- Each corner cubelet can be rotated by $\frac{2 \pi k}{3}$ radians, for any integer k.
- Equivalent to \mathbb{Z}_{3} !
- 8 corners means a direct product of \mathbb{Z}_{3} with itself 8 times.
- Similarly, rotate each edge cubelet by $n \pi$ for any integer n to get \mathbb{Z}_{2}
- 12 edges means a direct product of \mathbb{Z}_{2} with itself 12 times.

Time To Talk about Semi-Direct Products

Definition

Suppose that H_{1} and H_{2} are both subgroups of a group G. We say that G is the semi-direct product of H_{1} by H_{2}, written as $H_{1} \rtimes H_{2}$ if

- $G=H_{1} \times H_{2}$
- H_{1} and H_{2} only have the identity of G in common
- H_{1} is normal in G

Time To Talk About Wreath Products

Definition

Let X be a finite set where $|X|=m, G$ be a group, and H a permutation group acting on X. Let G^{m} be the direct product of G with itself m times, and let H act on G^{m} by permuting the copies of G. Then the Wreath Product of G and H, written $G \imath H$, is defined as $G^{m} \rtimes H$.

Back to the Cube Group

- $C_{\text {corners }}$ acts on the set of the corner cubelets as S_{8}.
- The orientations of all of the corner cubelets can be described as a direct product of \mathbb{Z}_{3} with itself eight times.
- $\left|S_{8}\right|=8$
- $C_{\text {corners }}$ is the direct product of the corner orientations and the corner positions.
- \mathbb{Z}_{3}^{8} is normal in $C_{\text {corners }}$
- Thus, $C_{\text {corners }} \cong\left(S_{8} \backslash \mathbb{Z}_{3}\right)$

Back to the Cube Group (continued)

- Similarly, $C_{\text {edges }} \cong\left(S_{12} \backslash \mathbb{Z}_{2}\right)$
- We know that $C_{\text {edges }}$ and $C_{\text {corners }}$ are separate orbits of the Cube group, so the Cube Group $\mathrm{G} \cong C_{\text {edges }} \times C_{\text {corners }}$
- Which implies...
- The Cube Group $G \cong\left(\mathbb{Z}_{3} \backslash S_{8}\right) \times\left(\mathbb{Z}_{2} \backslash S_{12}\right)$!

Other Fun Facts

- The order of $\left(\mathbb{Z}_{3}\right.$ 亿 $\left.S_{8}\right) \times\left(\mathbb{Z}_{2}\right.$ 亿 $\left.S_{12}\right)$ is $\frac{1}{2} \cdot 8!\cdot 3^{7} \cdot 12!\cdot 2^{11}$
- 43,252,003,274,489,856,000 is a big number
- That's one twelfth the order of the Illegal Cube Group
- Twelve unique orbits
- Fun Subgroups:

1. The Slice Subgroup
2. The Square Subgroup
3. The Antislice Subgroup
