Explorations of the Rubik's Cube Group

Zeb Howell

May 2016

▲□ ▶ ▲ □ ▶ ▲ □ ▶

3

Explorations of the Rubik's Cube Group

- One Cube made up of twenty six subcubes called "cubelets".
- ► Each cubelet has one, two, or three "facelets".
- ► Three kinds of cubelet, defined by their number of facelets:

・ 同 ト ・ ヨ ト ・ ヨ ト …

- 1. Six cubelets with one facelet: Center cubelets
- 2. Twelve cubelets with two facelets: Edge cubelets
- 3. Eight cubelets with three facelets: Corner cubelets
- $12! \times 8! \times 3^8 \times 2^{12}$ combinations.
- Not all these combinations can be reached!
 - (Call this the Illegal Cube Group)

Let the Cube Group G be the subgroup of S_{48} generated by:

$$\begin{split} \mathsf{R} &= (3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28) \\ \mathsf{L} &= (1,17,41,40)(4,20,44,37)(6,22,46,35)(9,11,16,14)(10,13,15,12) \\ \mathsf{D} &= (14,22,30,38)(15,23,31,39)(16,24,32,40)(41,43,48,46)(42,45,47,44) \\ \mathsf{F} &= (6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20) \\ \mathsf{U} &= (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19) \\ \mathsf{B} &= (1,14,48,27)(2,12,47,29)(3,9,46,32)(33,35,40,38)(34,37,39,36) \end{split}$$

<ロト < 団ト < 団ト < 団ト = 三目

Only even permutations!

Consider the set of cubelets C, and let the Cube Group act on C.

- ► Two orbits, *C*_{corners} and *C*_{edges}.
- ▶ Let *P* be the group induced by the action of *G* on *C*. Then:
 - 1. *P* is the combination of all edge permutations and corner permutations.

- 2. *P* is a subset of $(S_8 \times S_{12}) \cap A_{20}$
- 3. *P* contains $A_8 \times A_{12}$
- 4. *P* has order $\frac{1}{2} \times 8! \times 12!$

- ► Each corner cubelet can be rotated by ^{2πk}/₃ radians, for any integer k.
 - ▶ Equivalent to Z₃!
- ▶ 8 corners means a direct product of \mathbb{Z}_3 with itself 8 times.
- Similarly, rotate each edge cubelet by nπ for any integer n to get Z₂

・ロト ・回ト ・ヨト ・ヨト

▶ 12 edges means a direct product of Z₂ with itself 12 times.

Time To Talk about Semi-Direct Products

Definition

Suppose that H_1 and H_2 are both subgroups of a group G. We say that G is the **semi-direct product** of H_1 by H_2 , written as $H_1 \rtimes H_2$ if

- $G = H_1 \times H_2$
- H_1 and H_2 only have the identity of G in common
- H_1 is normal in G

Time To Talk About Wreath Products

Definition

Let X be a finite set where |X| = m, G be a group, and H a permutation group acting on X. Let G^m be the direct product of G with itself m times, and let H act on G^m by permuting the copies of G. Then the **Wreath Product** of G and H, written $G \wr H$, is defined as $G^m \rtimes H$.

- $C_{corners}$ acts on the set of the corner cubelets as S_8 .
- ► The orientations of all of the corner cubelets can be described as a direct product of Z₃ with itself eight times.
- ► |*S*₈| = 8
- C_{corners} is the direct product of the corner orientations and the corner positions.

- \mathbb{Z}_3^8 is normal in $C_{corners}$
- Thus, $C_{corners} \cong (S_8 \wr \mathbb{Z}_3)$

Back to the Cube Group (continued)

- Similarly, $C_{edges} \cong (S_{12} \wr \mathbb{Z}_2)$
- ▶ We know that C_{edges} and C_{corners} are separate orbits of the Cube group, so the Cube Group G ≅ C_{edges} × C_{corners}

・ロト ・回ト ・ヨト ・ヨト

- Which implies...
- The Cube Group $G \cong (\mathbb{Z}_3 \wr S_8) \times (\mathbb{Z}_2 \wr S_{12})!$

Other Fun Facts

- ► The order of $(\mathbb{Z}_3 \wr S_8) \times (\mathbb{Z}_2 \wr S_{12})$ is $\frac{1}{2} \cdot 8! \cdot 3^7 \cdot 12! \cdot 2^{11}$
- 43,252,003,274,489,856,000 is a big number
- That's one twelfth the order of the Illegal Cube Group
- Twelve unique orbits
- Fun Subgroups:
 - 1. The Slice Subgroup
 - 2. The Square Subgroup
 - 3. The Antislice Subgroup