Polynomial Resultants

Polynomial Resultants

Henry Woody

May 2, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Resultant

Polynomial Resultants

Definition:
For
$$f(x) = a_n x^n + \dots + a_1 x + a_0$$
,
 $g(x) = b_m x^m + \dots + b_1 x + b_0 \in F[x]$,
 $\operatorname{Res}(f, g, x) = a_n^m b_m^n \prod_{i,j} (\alpha_i - \beta_j)$,

where $f(\alpha_i) = 0$ for $1 \le i \le n$, and $g(\beta_j) = 0$ for $1 \le j \le m$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Common Factor Lemma

Resultants

Let $f(x), g(x) \in F[x]$ have degrees n and m, both greater than zero, respectively. Then f(x) and g(x) have a non-constant common factor if and only if there exist nonzero polynomials $A(x), B(x) \in F[x]$ such that $\deg(A(x)) \leq m - 1$, $\deg(B(x)) \leq n - 1$ and A(x)f(x) + B(x)g(x) = 0.

Proof

Polynomial Resultants

Henry Woody

 (\implies) Assume $h(x) \in F[x]$ is a common factor of f(x) and g(x), then $f(x) = h(x)f_1(x)$ and $g(x) = h(x)g_1(x)$. Consider,

$$g_1(x)f(x) + (-f_1(x))g(x)$$

= $g_1(x)(h(x)f_1(x)) - f_1(x)(h(x)g_1(x))$
= 0

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof

Polynomial Resultants

> (\Leftarrow) Assume A(x) and B(x) exist. Assume, contrary to the lemma, that f(x) and g(x) share no non-constant factors. Then gcd(f(x), g(x)) = r(x)f(x) + s(x)g(x) = 1

> > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Polynomial Resultants Henry Wood

Let

$$f(x) = a_n x^n + \dots + a_1 x + a_0, \ a_n \neq 0$$

$$g(x) = b_m x^m + \dots + b_1 x + b_0, \ b_m \neq 0$$

$$A(x) = c_{m-1} x^{m-1} + \dots + c_1 x + c_0,$$

$$B(x) = d_{n-1} x^{n-1} + \dots + d_1 x + d_0.$$

And A(x)f(x) + B(x)g(x) = 0

The Sylvester Matrix

Resultants

Syl(f, g, x)

◆ロト ◆聞と ◆臣と ◆臣と

æ

Properties of the Sylvester Matrix

Polynomial Resultants

• The determinant of the Sylvester matrix Syl(f, g, x) is a polynomial in the coefficients a_i, b_j of the polynomials f(x) and g(x). Further,

$$det(Syl(f,g,x)) = Res(f,g,x).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• For $f(x), g(x) \in F[x]$, there exist polynomials $A(x), B(x) \in F[x]$ so that A(x)f(x) + B(x)g(x) = Res(f, g, x).

Applications: The Discriminant

Polynomial Resultants

Henry Woody

For a polynomial $f(x) \in F[x]$, where $f(x) = a_n x^n + ... + a_1 x + a_0$, the discriminant is given by

$$D = \frac{(-1)^{n(n-1)/2}}{a_n} \operatorname{Res}(f, f', x),$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

where f'(x) is the derivative of f(x).

Discriminant Example

Polynomial Resultants

> Let $f(x) = ax^2 + bx + c$, then f'(x) = 2ax + b. $D = \frac{(-1)^{2(2-1)/2}}{a} \begin{vmatrix} a & 2a & 0 \\ b & b & 2a \\ c & 0 & b \end{vmatrix} = \frac{-1}{a} (a(b^2) - b(2ab) + c(4a^2))$ $= \frac{-1}{a} (ab^2 - 2ab^2 + 4a^2c)$ $= \frac{-1}{a} (-ab^2 + 4a^2c)$ $= b^2 - 4ac$

> > ▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Applications: Elimination

Polynomial Resultants

Res_{*i*} : $F[x_1, ..., x_n] \times F[x_1, ..., x_n] \rightarrow F[x_1, ..., x_{i-1}, x_{i+1}, ..., x_n]$, where Res_{*i*} is the resultant relative to the variable x_i .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Elimination Example

Polynomial Resultants

Let $f(x, y) = x^2y^2 - 25x^2 + 9$ and g(x, y) = 4x + y be two polynomials in F[x, y].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Partial Solutions

Polynomial Resultants Henry Wood

Theorem:

If $(\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n)$ is a solution to a homogeneous system of polynomials in $F[x_1, ..., x_{i-1}, x_{i+1}, ..., x_n]$ obtained by taking resultants of polynomials in $F[x_1, ..., x_n]$ with respect to x_i , then there exists $\alpha_i \in E$, where E is the field in which all polynomials in the system split, such that $(\alpha_1, ..., \alpha_i, ..., \alpha_n)$ is a solution to the system in $F[x_1, ..., x_n]$.

Polynomial Resultants

> Thank You. This is the end.

Questions? Comments?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ