Polynomial Resultants

Henry Woody

May 2, 2016

The Resultant

Definition:
For $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$,

$$
g(x)=b_{m} x^{m}+\ldots+b_{1} x+b_{0} \in F[x]
$$

$$
\operatorname{Res}(f, g, x)=a_{n}^{m} b_{m}^{n} \prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)
$$

where $f\left(\alpha_{i}\right)=0$ for $1 \leq i \leq n$, and $g\left(\beta_{j}\right)=0$ for $1 \leq j \leq m$.

Common Factor Lemma

Polynomial
Resultants

Let $f(x), g(x) \in F[x]$ have degrees n and m, both greater than zero, respectively. Then $f(x)$ and $g(x)$ have a non-constant common factor if and only if there exist nonzero polynomials $A(x), B(x) \in F[x]$ such that $\operatorname{deg}(A(x)) \leq m-1$, $\operatorname{deg}(B(x)) \leq n-1$ and $A(x) f(x)+B(x) g(x)=0$.

Proof

Polynomial
Resultants
(\Longrightarrow)
Assume $h(x) \in F[x]$ is a common factor of $f(x)$ and $g(x)$, then $f(x)=h(x) f_{1}(x)$ and $g(x)=h(x) g_{1}(x)$.
Consider,

$$
\begin{gathered}
g_{1}(x) f(x)+\left(-f_{1}(x)\right) g(x) \\
=g_{1}(x)\left(h(x) f_{1}(x)\right)-f_{1}(x)\left(h(x) g_{1}(x)\right) \\
=0
\end{gathered}
$$

Proof

(\Longleftarrow)
Assume $A(x)$ and $B(x)$ exist.
Assume, contrary to the lemma, that $f(x)$ and $g(x)$ share no non-constant factors. Then
$\operatorname{gcd}(f(x), g(x))=r(x) f(x)+s(x) g(x)=1$

$$
\begin{aligned}
& \text { Let } \\
& f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}, a_{n} \neq 0 \\
& g(x)=b_{m} x^{m}+\ldots+b_{1} x+b_{0}, b_{m} \neq 0 \\
& A(x)=c_{m-1} x^{m-1}+\ldots+c_{1} x+c_{0}, \\
& B(x)=d_{n-1} x^{n-1}+\ldots+d_{1} x+d_{0} .
\end{aligned}
$$

And $A(x) f(x)+B(x) g(x)=0$

The Sylvester Matrix

Polynomial
Resultants
$\operatorname{Syl}(f, g, x)$
$\left[\begin{array}{cccccccc}a_{n} & & & & b_{m} & & & \\ a_{n-1} & a_{n} & & & b_{m-1} & b_{m} & & \\ a_{n-2} & a_{n-1} & \ddots & & b_{m-2} & b_{m-1} & \ddots & \\ \vdots & \vdots & \ddots & a_{n} & \vdots & \vdots & \ddots & b_{m} \\ \vdots & \vdots & & a_{n-1} & \vdots & \vdots & & b_{m-1} \\ a_{0} & a_{1} & & & b_{0} & b_{1} & & \\ & a_{0} & \ddots & \vdots & & b_{0} & \ddots & \vdots \\ & & \ddots & a_{1} & & & \ddots & b_{1} \\ & & & a_{0} & & & & b_{0}\end{array}\right]$

Properties of the Sylvester Matrix

Polynomial
Resultants

- The determinant of the Sylvester matrix $\operatorname{Syl}(f, g, x)$ is a polynomial in the coefficients a_{i}, b_{j} of the polynomials $f(x)$ and $g(x)$. Further,

$$
\operatorname{det}(\operatorname{Syl}(f, g, x))=\operatorname{Res}(f, g, x)
$$

- For $f(x), g(x) \in F[x]$, there exist polynomials $A(x), B(x) \in F[x]$ so that $A(x) f(x)+B(x) g(x)=\operatorname{Res}(f, g, x)$.

Applications: The Discriminant

Polynomial
Resultants

For a polynomial $f(x) \in F[x]$, where $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$, the discriminant is given by

$$
D=\frac{(-1)^{n(n-1) / 2}}{a_{n}} \operatorname{Res}\left(f, f^{\prime}, x\right)
$$

where $f^{\prime}(x)$ is the derivative of $f(x)$.

Discriminant Example

Polynomial
Resultants

Henry Woody

$$
\text { Let } f(x)=a x^{2}+b x+c, \text { then } f^{\prime}(x)=2 a x+b
$$

$$
\begin{aligned}
D=\frac{(-1)^{2(2-1) / 2}}{a}\left|\begin{array}{ccc}
a & 2 a & 0 \\
b & b & 2 a \\
c & 0 & b
\end{array}\right| & =\frac{-1}{a}\left(a\left(b^{2}\right)-b(2 a b)+c\left(4 a^{2}\right)\right) \\
& =\frac{-1}{a}\left(a b^{2}-2 a b^{2}+4 a^{2} c\right) \\
& =\frac{-1}{a}\left(-a b^{2}+4 a^{2} c\right) \\
& =b^{2}-4 a c
\end{aligned}
$$

Applications: Elimination

Polynomial
Resultants
$\operatorname{Res}_{i}: F\left[x_{1}, \ldots, x_{n}\right] \times F\left[x_{1}, \ldots, x_{n}\right] \rightarrow F\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$, where Res_{i} is the resultant relative to the variable x_{i}.

Elimination Example

Polynomial
Resultants

Let $f(x, y)=x^{2} y^{2}-25 x^{2}+9$ and $g(x, y)=4 x+y$ be two polynomials in $F[x, y]$.

Partial Solutions

Theorem:
If $\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{n}\right)$ is a solution to a homogeneous system of polynomials in $F\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$ obtained by taking resultants of polynomials in $F\left[x_{1}, \ldots, x_{n}\right]$ with respect to x_{i}, then there exists $\alpha_{i} \in E$, where E is the field in which all polynomials in the system split, such that $\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{n}\right)$ is a solution to the system in $F\left[x_{1}, \ldots, x_{n}\right]$.

The End

Polynomial
Resultants

Thank You.
This is the end.

Questions?
Comments?

