Algebraic Coding Theory

Ramsey Rossmann May 7, 2017

University of Puget Sound

Motivation

Goal

- Transmission across noisy channel
- Encoding and decoding schemes
- Detection vs. correction

Example

- Message: $u_1u_2\cdots u_k, u_i\in\mathbb{Z}_2$.
- Encoding: $u_1u_1u_1u_1u_2u_2u_2u_2\cdots u_ku_ku_ku_k$.
- Decoding:

 $\begin{array}{l} 0000 \rightarrow 0 \\ 0001 \rightarrow 0 \\ 0011 \rightarrow ? \end{array}$

How "good" is a code:

- How many errors are corrected?
- How many errors are detected?
- How accurate are the corrections?
- How efficient is the code?
- How easy are encoding and decoding?

- Message: k-bit binary string $u_0u_1\cdots u_k$ or vector **u**.
- Codeword: *n*-bit binary string $x_0x_1\cdots x_n$ or vector **x**.
- Encoding function $E: \mathbb{Z}_2^k \to \mathbb{Z}_2^n$
- Decoding function $D: \mathbb{Z}_2^n \to \mathbb{Z}_2^k$
- Code $\mathscr{C} = \operatorname{Im}(E)$. Also, the set of codewords.
- (n,k)-block code: a code that encodes messages of length k into codewords of length n.

Characteristics

- The **distance** between **x** and **y**, $d(\mathbf{x}, \mathbf{y})$: number of bits in which **x** and **y** differ.
- The minimum distance of a code C, d_{min}(C): minimum of all distances d(x, y) for all x ≠ y in C.
- The weight of a codeword \mathbf{x} , $w(\mathbf{c})$, is the number of 1s in \mathbf{x} .
- A code is **t-error-detecting** if, whenever there are at most t errors and at least 1 error in a codeword, the resulting word is not a codeword.
- A decoding function uses maximum-likelihood decoding if it decodes a received word x into a codeword y such that d(x, y) ≤ d(x, z) for all codewords z ≠ y.
- A code is **t-error-correcting** if maximum-likelihood decoding corrects all errors of size t or less.

Theorem

 $d_{min}(\mathscr{C}) = \min\{w(\mathbf{x}) | \mathbf{x} \neq \mathbf{0}\}.$

Theorem

A code \mathscr{C} is exactly t-error-detecting if and only if $d_{\min}(\mathscr{C}) = t + 1$.

Theorem

A code \mathscr{C} is t-error-correcting if and only if $d_{\min}(\mathscr{C}) = 2t + 1$ or 2t + 2.

Linear Codes

Consider the code ${\mathscr C}$ given by the following encoding function:

•
$$E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$$
 given by $E\left(\begin{bmatrix}u_1\\u_2\\u_3\end{bmatrix}\right) = \begin{bmatrix}u_1\\u_2\\u_3\\u_1+u_2\\u_1+u_3\\u_2+u_3\end{bmatrix} = \begin{bmatrix}x_1\\x_2\\x_3\\x_4\\x_5\\x_6\end{bmatrix}$

• Parity-check bit:
$$x_4 = u_1 + u_2$$
.

- Minimum distance: $d_{\min}(\mathscr{C}) = \min\{\mathbf{w}(\mathbf{x}) | \mathbf{x} \neq \mathbf{0}\} = 3$ (1,0,0) \mapsto (1,0,0,1,1,0) (0,1,0) \mapsto (0,1,0,1,0,1) (0,0,1) \mapsto (0,0,1,0,1,1)
- 2-error-detecting
- 1-error-correcting

Consider the
$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

For some $\mathbf{u} \in \mathbb{Z}_2^3$,

 $\mathbf{Gu} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_1 + u_2 \\ u_1 + u_3 \\ u_2 + u_3 \end{bmatrix}.$

Then, $\mathscr{C} = {\mathbf{Gu} | \mathbf{u} \in \mathbb{Z}_2^3}$, so **G** is the **generator matrix** for \mathscr{C} .

For the **parity-check matrix H**, consider

$$\mathbf{Hx} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + x_4 \\ x_1 + x_3 + x_5 \\ x_2 + x_3 + x_6 \end{bmatrix}.$$

- If $\mathbf{H}\mathbf{x} = \mathbf{0}$, then no errors are detected.
- If $\mathbf{Hx} \neq \mathbf{0}$, then at least one error occurred.

Thus, $\mathscr{C} = \mathcal{N}(\mathbf{H}) \subset \mathbb{Z}_2^3$.

Definition

Let **H** be an $(n - k) \times n$ binary matrix of rank n - k. The null space of **H**, $\mathcal{N}(\mathbf{H}) \subset \mathbb{Z}_2^n$, forms a code \mathscr{C} called a **linear** (n, k)-code with parity-check matrix **H**.

Theorem

Linear codes are linear.

Proof.

For codeword **x** and **y**, we know $\mathbf{H}\mathbf{x} = \mathbf{0}$ and $\mathbf{H}\mathbf{y} = \mathbf{0}$. Then, if $c \in \mathbb{Z}_2$,

$$\begin{split} \mathbf{H}(\mathbf{x}+\mathbf{y}) &= \mathbf{H}\mathbf{x} + \mathbf{H}\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}.\\ \mathbf{H}(c\mathbf{x}) &= c\mathbf{H}\mathbf{x} = c\mathbf{0} = 0. \end{split}$$

Theorem

A linear code ${\mathscr C}$ is an additive group.

Proof.

For codewords \mathbf{x} and \mathbf{y} in \mathscr{C} and parity-check matrix \mathbf{H} ,

- $\mathbf{H0} = \mathbf{0} \Rightarrow \mathscr{C} \neq \emptyset$
- $\mathbf{H}(\mathbf{x} \mathbf{y}) = \mathbf{H}\mathbf{x} \mathbf{H}\mathbf{y} = \mathbf{0} \mathbf{0} = \mathbf{0} \Rightarrow \mathbf{x} \mathbf{y} \in \mathscr{C}.$

Thus, \mathscr{C} is a subgroup of \mathbb{Z}_2^n .

If we detect an error, how can we decode it? For received \mathbf{x} , we know $\mathbf{x} = \mathbf{c} + \mathbf{e}$:

- $\bullet\,$ Original codeword c
- Transmission error **e**

Then,

$\mathbf{H}\mathbf{x} = \mathbf{H}(\mathbf{c} + \mathbf{e}) = \mathbf{H}\mathbf{c} + \mathbf{H}\mathbf{e} = \mathbf{0} + \mathbf{H}\mathbf{e} = \mathbf{H}\mathbf{e}.$

Minimal error corresponds to **e** with minimal weight. To decode,

- 1. Calculate $\mathbf{H}\mathbf{x}$ to determine coset.
- 2. Pick coset representative \mathbf{e} with minimal weight.
- 3. Decode to $\mathbf{x} \mathbf{e}$.

Performance:

- n-k parity-check bits
- Flexible minimum distance:

$$d_{\min}(\mathscr{C}) = \min_{\mathbf{c} \in \mathscr{C} \setminus \{\mathbf{0}\}} w(\mathbf{c}).$$

- As $d_{\min}(\mathscr{C})$ increases, the number of codewords decreases.
- Slow decoding:

$$[\mathbb{Z}_2^n:\mathscr{C}] = \frac{|\mathbb{Z}_2^n|}{|\mathscr{C}|} = \frac{2^n}{2^k} = 2^{n-k} \text{ cosets.}$$

Definition

A code \mathscr{C} is a **cyclic code** if for every codeword $u_0u_1 \ldots u_{n-1}$, the shifted word $u_{n-1}u_1u_2 \ldots u_{n-2}$ is also a codeword in \mathscr{C} .

Now, consider $u_0u_1\cdots u_{n-1}$ as $f(x) = u_0 + u_1x + \cdots + u_{k-1}x^{k-1}$ where $f(x) \in \mathbb{Z}_2[x]/\langle x^k - 1 \rangle$.

Definition

For $g(x) \in \mathbb{Z}_2[x]$ with degree n - k, a code \mathscr{C} is a **polynomial code** if each codeword corresponds to a polynomial in $\mathbb{Z}_2[x]$ of degree less than n divisible by g(x).

A message $f(x) = u_0 + u_1 x + \dots + u_{k-1} x^{k-1}$ is encoded to g(x)f(x).

Example

Let $g(x) = 1 + x + x^3$ (irreducible). Then

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

is the generator matrix that corresponds to the ideal generated by g(x). Similarly,

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

is the parity-check matrix for this code.

Generalization

If $g(x) = g_0 + g_1 x + \dots + g_{n-k} x^{n-k}$, $h(x) = h_0 + h_1 x + \dots + h_k x^k$, and $g(x)h(x) = x^n - 1$, then the polynomial code generated by g(x) has

$$\mathbf{G} = \begin{bmatrix} g_0 & 0 & \cdots & 0 \\ g_1 & g_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_{n-k} & g_{n-k-1} & \cdots & g_0 \\ 0 & g_{n-k} & \cdots & g_1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & g_{n-k} \end{bmatrix}$$
$$\mathbf{H}_{(n-k)\times n} = \begin{bmatrix} 0 & \cdots & 0 & 0 & h_k & \cdots & h_0 \\ 0 & \cdots & 0 & h_k & \cdots & h_0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ h_k & \cdots & h_0 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Theorem

A linear code \mathscr{C} in \mathbb{Z}_2^n is cyclic if and only if it is an ideal in $\mathbb{Z}[x]/\langle x^n-1\rangle$.

Thus, we have a **minimal generator polynomial** for a code polynomial code \mathscr{C} .

Theorem

Let $\mathscr{C} = \langle g(x) \rangle$ be a cyclic code in $\mathbb{Z}_2[x]/\langle x^n - 1 \rangle$ and suppose that ω is a primitive nth root of unity over \mathbb{Z}_2 . If s consecutive powers of ω are roots of g(x), then $d_{\min}(\mathscr{C}) \geq s + 1$.

- Linear codes: simple, straightforward, computationally slow.
- Polynomial codes: more structured, faster and more complicated.
- Other considerations:
 - More algebra
 - Where and when errors occur
 - Combinatorics
 - Sphere-packing

References

- 1. Richard W. Hamming. *Coding and Information Theory*. Prentice-Hall, Inc., 1980.
- Raymond Hill. A First Course in Coding Theory. Clarendon Press, 1999.
- Thomas W. Judson. Abstract Algebra: Theory and Applications. Orthogonal Publishing L3C, 2018.
- Rudolf Lidl and Gunter Pilz. Applied Abstract Algebra. Springer, 2008.
- F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. Elsevier Science Publishers B.V., 1988.
- Steven Roman. Coding and Information Theory. Springer-Verlag, 1992.