Algebraic Coding Theory

Ramsey Rossmann
May 7, 2017
University of Puget Sound

Motivation

Goal

- Transmission across noisy channel
- Encoding and decoding schemes
- Detection vs. correction

Example

- Message: $u_{1} u_{2} \cdots u_{k}, u_{i} \in \mathbb{Z}_{2}$.
- Encoding: $u_{1} u_{1} u_{1} u_{1} u_{2} u_{2} u_{2} u_{2} \cdots u_{k} u_{k} u_{k} u_{k}$.
- Decoding:

$$
\begin{aligned}
& 0000 \rightarrow 0 \\
& 0001 \rightarrow 0 \\
& 0011 \rightarrow ?
\end{aligned}
$$

Measurements

How "good" is a code:

- How many errors are corrected?
- How many errors are detected?
- How accurate are the corrections?
- How efficient is the code?
- How easy are encoding and decoding?

Setup

- Message: k-bit binary string $u_{0} u_{1} \cdots u_{k}$ or vector \mathbf{u}.
- Codeword: n-bit binary string $x_{0} x_{1} \cdots x_{n}$ or vector \mathbf{x}.
- Encoding function $E: \mathbb{Z}_{2}^{k} \rightarrow \mathbb{Z}_{2}^{n}$
- Decoding function $D: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{k}$
- Code $\mathscr{C}=\operatorname{Im}(E)$. Also, the set of codewords.
- (n, k)-block code: a code that encodes messages of length k into codewords of length n.

Characteristics

- The distance between \mathbf{x} and $\mathbf{y}, d(\mathbf{x}, \mathbf{y})$: number of bits in which \mathbf{x} and \mathbf{y} differ.
- The minimum distance of a code $\mathscr{C}, d_{\min }(\mathscr{C})$: minimum of all distances $d(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x} \neq \mathbf{y}$ in \mathscr{C}.
- The weight of a codeword $\mathbf{x}, \mathrm{w}(\mathbf{c})$, is the number of 1 s in \mathbf{x}.
- A code is t-error-detecting if, whenever there are at most t errors and at least 1 error in a codeword, the resulting word is not a codeword.
- A decoding function uses maximum-likelihood decoding if it decodes a received word \mathbf{x} into a codeword \mathbf{y} such that $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})$ for all codewords $\mathbf{z} \neq \mathbf{y}$.
- A code is t-error-correcting if maximum-likelihood decoding corrects all errors of size t or less.

Preliminary Results

Theorem
$d_{\text {min }}(\mathscr{C})=\min \{w(\mathbf{x}) \mid \mathbf{x} \neq 0\}$.

Theorem

A code \mathscr{C} is exactly t-error-detecting if and only if $d_{\min }(\mathscr{C})=t+1$.

Theorem

A code \mathscr{C} is t-error-correcting if and only if $d_{\min }(\mathscr{C})=2 t+1$ or $2 t+2$.

Linear Codes

Consider the code \mathscr{C} given by the following encoding function:

- $E: \mathbb{Z}_{2}^{3} \rightarrow \mathbb{Z}_{2}^{6}$ given by $E\left(\left[\begin{array}{c}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]\right)=\left[\begin{array}{c}u_{1} \\ u_{2} \\ u_{3} \\ u_{1}+u_{2} \\ u_{1}+u_{3} \\ u_{2}+u_{3}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]$.
- Parity-check bit: $x_{4}=u_{1}+u_{2}$.
- Minimum distance: $d_{\text {min }}(\mathscr{C})=\min \{\mathrm{w}(\mathbf{x}) \mid \mathbf{x} \neq \mathbf{0}\}=3$
$(1,0,0) \mapsto(1,0,0,1,1,0)$
$(0,1,0) \mapsto(0,1,0,1,0,1)$
$(0,0,1) \mapsto(0,0,1,0,1,1)$
- 2 -error-detecting
- 1-error-correcting

Encoding

Consider the $\mathbf{G}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.
For some $\mathbf{u} \in \mathbb{Z}_{2}^{3}$,

$$
\mathbf{G u}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
u_{1}+u_{2} \\
u_{1}+u_{3} \\
u_{2}+u_{3}
\end{array}\right]
$$

Then, $\mathscr{C}=\left\{\mathbf{G u} \mid \mathbf{u} \in \mathbb{Z}_{2}^{3}\right\}$, so \mathbf{G} is the generator matrix for \mathscr{C}.

Error-detection

For the parity-check matrix \mathbf{H}, consider

$$
\mathbf{H} \mathbf{x}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+x_{2}+x_{4} \\
x_{1}+x_{3}+x_{5} \\
x_{2}+x_{3}+x_{6}
\end{array}\right]
$$

- If $\mathbf{H x}=\mathbf{0}$, then no errors are detected.
- If $\mathbf{H x} \neq \mathbf{0}$, then at least one error occurred.

Thus, $\mathscr{C}=\mathcal{N}(\mathbf{H}) \subset \mathbb{Z}_{2}^{3}$.

Linear Codes

Definition

Let \mathbf{H} be an $(n-k) \times n$ binary matrix of rank $n-k$. The null space of $\mathbf{H}, \mathcal{N}(\mathbf{H}) \subset \mathbb{Z}_{2}^{n}$, forms a code \mathscr{C} called a linear (n, k)-code with parity-check matrix \mathbf{H}.

Theorem

Linear codes are linear.

Proof.

For codeword \mathbf{x} and \mathbf{y}, we know $\mathbf{H x}=\mathbf{0}$ and $\mathbf{H y}=\mathbf{0}$. Then, if $c \in \mathbb{Z}_{2}$,

$$
\begin{array}{r}
\mathbf{H}(\mathbf{x}+\mathbf{y})=\mathbf{H x}+\mathbf{H y}=\mathbf{0}+\mathbf{0}=\mathbf{0} . \\
\mathbf{H}(c \mathbf{x})=c \mathbf{H} \mathbf{x}=c \mathbf{0}=0 .
\end{array}
$$

Linear Codes

Theorem

A linear code \mathscr{C} is an additive group.

Proof.

For codewords \mathbf{x} and \mathbf{y} in \mathscr{C} and parity-check matrix \mathbf{H},

- $\mathrm{HO}=\mathbf{0} \Rightarrow \mathscr{C} \neq \emptyset$
- $\mathbf{H}(\mathbf{x}-\mathrm{y})=\mathbf{H x}-\mathbf{H y}=\mathbf{0}-\mathbf{0}=\mathbf{0} \Rightarrow \mathrm{x}-\mathrm{y} \in \mathscr{C}$.

Thus, \mathscr{C} is a subgroup of \mathbb{Z}_{2}^{n}.

Coset Decoding

If we detect an error, how can we decode it?
For received \mathbf{x}, we know $\mathbf{x}=\mathbf{c}+\mathbf{e}$:

- Original codeword c
- Transmission error e

Then,

$$
\mathbf{H x}=\mathbf{H}(\mathbf{c}+\mathbf{e})=\mathbf{H c}+\mathbf{H e}=\mathbf{0}+\mathbf{H e}=\mathbf{H e} .
$$

Minimal error corresponds to \mathbf{e} with minimal weight. To decode,

1. Calculate $\mathbf{H x}$ to determine coset.
2. Pick coset representative e with minimal weight.
3. Decode to $\mathbf{x}-\mathbf{e}$.

Assessment

Performance:

- $n-k$ parity-check bits
- Flexible minimum distance:

$$
d_{\min }(\mathscr{C})=\min _{\mathbf{c} \in \mathscr{C} \backslash\{0\}} \mathrm{w}(\mathbf{c}) .
$$

- As $d_{\min }(\mathscr{C})$ increases, the number of codewords decreases.
- Slow decoding:

$$
\left[\mathbb{Z}_{2}^{n}: \mathscr{C}\right]=\frac{\left|\mathbb{Z}_{2}^{n}\right|}{|\mathscr{C}|}=\frac{2^{n}}{2^{k}}=2^{n-k} \text { cosets. }
$$

Polynomial Codes

Definition

A code \mathscr{C} is a cyclic code if for every codeword $u_{0} u_{1} \ldots u_{n-1}$, the shifted word $u_{n-1} u_{1} u_{2} \ldots u_{n-2}$ is also a codeword in \mathscr{C}.

Now, consider $u_{0} u_{1} \cdots u_{n-1}$ as $f(x)=u_{0}+u_{1} x+\cdots+u_{k-1} x^{k-1}$ where $f(x) \in \mathbb{Z}_{2}[x] /\left\langle x^{k}-1\right\rangle$.

Definition

For $g(x) \in \mathbb{Z}_{2}[x]$ with degree $n-k$, a code \mathscr{C} is a polynomial code if each codeword corresponds to a polynomial in $\mathbb{Z}_{2}[x]$ of degree less than n divisible by $g(x)$.

A message $f(x)=u_{0}+u_{1} x+\cdots+u_{k-1} x^{k-1}$ is encoded to $g(x) f(x)$.

Example

Let $g(x)=1+x+x^{3}$ (irreducible). Then

$$
\mathbf{G}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is the generator matrix that corresponds to the ideal generated by $g(x)$. Similarly,

$$
\mathbf{H}=\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

is the parity-check matrix for this code.

Generalization

If $g(x)=g_{0}+g_{1} x+\cdots+g_{n-k} x^{n-k}, h(x)=h_{0}+h_{1} x+\cdots+h_{k} x^{k}$, and $g(x) h(x)=x^{n}-1$, then the polynomial code generated by $g(x)$ has

$$
\begin{aligned}
& \mathbf{G}=\left[\begin{array}{cccc}
g_{0} & 0 & \cdots & 0 \\
g_{1} & g_{0} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
g_{n-k} & g_{n-k-1} & \cdots & g_{0} \\
0 & g_{n-k} & \cdots & g_{1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & & 0 & \cdots \\
g_{n-k}
\end{array}\right] \\
& \mathbf{H}_{(n-k) \times n}=\left[\begin{array}{cccccc}
0 & \cdots & 0 & 0 & h_{k} & \cdots \\
0_{0} & \cdots & 0 & h_{k} & \cdots & h_{0} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots \\
h_{k} & \cdots & h_{0} & 0 & 0 & \cdots
\end{array}\right] .
\end{aligned}
$$

Results for Polynomial Codes

Theorem

A linear code \mathscr{C} in \mathbb{Z}_{2}^{n} is cyclic if and only if it is an ideal in $\mathbb{Z}[x] /\left\langle x^{n}-1\right\rangle$.

Thus, we have a minimal generator polynomial for a code polynomial code \mathscr{C}.

Theorem

Let $\mathscr{C}=\langle g(x)\rangle$ be a cyclic code in $\mathbb{Z}_{2}[x] /\left\langle x^{n}-1\right\rangle$ and suppose that ω is a primitive nth root of unity over \mathbb{Z}_{2}. If s consecutive powers of ω are roots of $g(x)$, then $d_{\min }(\mathscr{C}) \geq s+1$.

Conclusions

- Linear codes: simple, straightforward, computationally slow.
- Polynomial codes: more structured, faster and more complicated.
- Other considerations:
- More algebra
- Where and when errors occur
- Combinatorics
- Sphere-packing

References

1. Richard W. Hamming. Coding and Information Theory. Prentice-Hall, Inc., 1980.
2. Raymond Hill. A First Course in Coding Theory. Clarendon Press, 1999.
3. Thomas W. Judson. Abstract Algebra: Theory and Applications. Orthogonal Publishing L3C, 2018.
4. Rudolf Lidl and Gunter Pilz. Applied Abstract Algebra. Springer, 2008.
5. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. Elsevier Science Publishers B.V., 1988.
6. Steven Roman. Coding and Information Theory. Springer-Verlag, 1992.
