Cayley Graphs

Daniel York
University of Puget Sound
dsyork@pugetsound.edu

7 May 2019

Overview
(1) Cayley Graphs and Group Actions

- Graph Theory Refresher
- Introducing Cayley Graphs
- Group Actions and Vertex Transitivity
(2) Components and Cosets
- Components and Cosets
- Revisiting \mathbb{Z}_{8}
(3) Direct Products
- Fun with \mathbb{Z}_{10}

Graph Theory Refresher

- Graph: a set of vertices and a set of edges between them.
- Directed vs. undirected graphs
- Simple graph: Undirected, unweighted edges; no loops; no multiple edges
- Graph isomorphism: Bijection $\phi: V(\Gamma) \rightarrow V\left(\Gamma^{\prime}\right)$ where

$$
\{u, v\} \in E(\Gamma) \Longleftrightarrow\{\phi(u), \phi(v)\} \in E\left(\Gamma^{\prime}\right)
$$

Cayley Graphs and Group Actions

Cayley Graphs

Definition

G group, and C inverse-closed subset of G. The Cayley graph of G relative to $C, \Gamma(G, C)$, is a simple graph defined as follows:

- $V(\Gamma)=G$
- $E(\Gamma)=\left\{\{g, h\} \mid h g^{-1} \in C\right\}$.

That is, $\{g, h\} \in E(\Gamma)$ if and only if there is some $c \in C$ such that $h=c g=\lambda_{c}(g)$.

Note: we call C the connection set of $\Gamma(G, C)$.

One Group, Different Cayley Graphs

Example $\left(\mathbb{Z}_{8}, C\right.$ generates $\left.\mathbb{Z}_{8}\right)$

One Group, Different Cayley Graphs

Example $\left(\mathbb{Z}_{8}, C\right.$ generates subgroup $\left.\cong \mathbb{Z}_{4}\right)$
$C=\{2,6\}$

One Cayley Graph, Two Different Groups

Example $\left(G=S_{3}, C=\{(123),(132),(12)\}\right)$

One Cayley Graph, Two Different Groups

Example $\left(G=\mathbb{Z}_{6}, C=\{2,4,3\}\right)$

A Note about Definitions

There are different ways to define Cayley graphs.

- Connected Cayley graphs: these require that C be a generating set for G.
- Directed Cayley graphs: these do not require C to be inverse-closed.
- Colored, directed Cayley graphs: edges (g, h) are colored/labeled based on which $c \in C$ satisfies $h=c g$.
Notice: () vs $\}$ for undirected vs. directed edges

Lemma

Let θ be an automorphism of G. Then $\Gamma(G, C) \cong \Gamma(G, \theta(C))$.

Proof.

For any $x, y \in G$,

$$
\theta(y) \theta(x)^{-1}=\theta\left(y x^{-1}\right)
$$

so $\theta(y) \theta(x)^{-1} \in C$ if and only if $y x^{-1} \in C$. Hence θ is an isomorphism from $\Gamma(G, C)$ to $\Gamma(G, \theta(C))$.

Group Actions and Vertex Transitivity

Cayley's Theorem

Theorem (Cayley)

Every group is isomorphic to a group of permutations.

Proof idea.

Consider the left regular representation $\lambda_{g}: G \rightarrow G$, defined by

$$
\lambda_{g}(x)=g x
$$

Note: We could have instead considered the right regular representation $\rho_{g}: G \rightarrow G$, defined as $\rho_{g}(x)=x g$.

Let S be a permutation group acting on a set X.

Definition

S is transitive if for every $x, y \in X$, there is $\sigma \in S$ such that $\sigma(x)=y$.

Definition
S is regular if it is transitive and the only $\sigma \in S$ that fixes any element of X is the identity.

We say S acts transitively/regularly (resp.) on X.

Vertex Transitive Graphs

Definition

A graph Γ is vertex transitive if $\operatorname{Aut}(G)$ acts transitively on Γ, i.e. $\operatorname{Aut}(G)$ has only one orbit.

Example (Not vertex transitive)

Also not regular.

Vertex Transitive Graphs

Theorem

The Cayley graph $\Gamma(G, C)$ is vertex transitive.

Proof.

Consider the right regular representation of $G, \rho_{g}: x \mapsto x g$.
Observe that

$$
(y g)(x g)^{-1}=y g g^{-1} x^{-1}=y x^{-1}
$$

so $\{x g, y g\} \in E(\Gamma(G, C))$ if and only if $\{x, y\} \in E(\Gamma(G, C))$. Then ρ_{g} is an automorphism of $\Gamma(G, C)$. By Cayley's Theorem, $\bar{G}=\left\{\rho_{g} \mid g \in G\right\}$ forms a subgroup of $\operatorname{Aut}(\Gamma(G, C))$ isomorphic to G. For $g, h \in G, \rho_{g^{-1} h}(g)=h$. Thus \bar{G} acts transitively on $\Gamma(G, C)$.

Corollary
Aut $(\Gamma(G, C))$ has a regular subgroup isomorphic to G.

Proof.

$\bar{G}=\left\{\rho_{g} \mid g \in G\right\}$ is a subgroup of $\operatorname{Aut}(\Gamma(G, C))$ that acts transitively on $V(\Gamma)=G$. Since $\bar{G} \cong G$, only the identity will fix any element of $V(\Gamma)=G$. Thus \bar{G} is regular.

A Way to Identify Cayley Graphs

Theorem

If a group G acts regularly on the vertices of Γ, then Γ is the Cayley graph of G relative to some inverse-closed $C \subset G \backslash e$.

Proof.

Grab $u \in V(\Gamma)$. Let g_{v} be the element of G such that $v=g_{v}(u)$. Define $C:=\left\{g_{v}: v\right.$ is adjacent to $\left.u\right\}$.

If $x, y \in V(\Gamma)$, then $g_{x} \in \operatorname{Aut}(\Gamma)$, so $x \sim y$ if and only if $g_{x}^{-1}(x) \sim g_{x}^{-1}(y)$. But $g_{x}^{-1}(x)=u$, and $g_{x}^{-1}(y)=g_{y} g_{x}^{-1}(u)$, so $x \sim y$ if and only if $g_{y} g_{x}^{-1} \in C$.

Identify each vertex x with g_{x}. Then $\Gamma=\Gamma(G, C)$. Γ is undirected with no loops, so C is an inverse-closed subset of $G \backslash e$.

Remark

Not all vertex-transitive graphs are Cayley graphs. Example: the Petersen graph.

Example (Petersen graph)

Only two groups of order $10: \mathbb{Z}_{10}$ and D_{5}.

Structure of the Cayley graph

How to anticipate the structure of the Cayley graph $\Gamma(G, C)$?

- Examine the subgroup generated by C.
- The Cayley graph gives a visual representation of the left cosets of the subgroup generated by C.
Time to examine the components of a Cayley graph...

Components of the Cayley graph

Lemma (Same Coset, Same Component)

Let H be the subgroup of G generated by an inverse-closed subset C of $G \backslash e$. Then two vertices u, v in $\Gamma(G, C)$ are in the same component of $\Gamma(G, C)$ if and only if $u H=v H$.

Proof. (\Rightarrow).

Assume u, v in the same component Γ_{k} of $\Gamma(G, C)$. Then there is at least one path from u to $v, P=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, where $x_{1}=u$ and $x_{m}=v$. So $x_{i+1} x_{i}^{-1} \in C$ for $1 \leq i<m$. Then

$$
v=\left(v x_{m-1}^{-1}\right)\left(x_{m-1} x_{m-2}^{-1}\right) \cdots\left(x_{2} u^{-1}\right) u=h u
$$

, for some $h \in H$. Equivalently, $h=v u^{-1}$, so $v u^{-1} \in H$. Then $u H=v H$.

Components of the Cayley graph

Proof. (\Leftarrow).
Assume $u H=v H$. Then $v u^{-1} \in H$, so $v=h u$ for some $h \in H$. Further, $h=c_{m} c_{m-1} \cdots c_{2} c_{1}$ where $c_{i} \in C, 1 \leq i \leq m$.

Let $x_{0}=u, x_{1}=c_{1} x_{0}, x_{2}=c_{2} x_{1}, \ldots, x_{m}=c_{m} x_{m-1}=v$. Then we have a path from u to v, namely, $P=\left\{u, x_{1}, x_{2}, \ldots, x_{m-1}, v\right\}$. Thus u and v are in the same component of $\Gamma(G, C)$.

When are Cayley graphs connected?

Corollary

The Cayley graph $\Gamma(G, C)$ is connected if and only if C generates G.

Proof.

If $\Gamma(G, C)$ is connected, then it has only one component. Hence $[G:\langle C\rangle]=1$, so $G=\langle C\rangle$.

If C generates G, then $[G:\langle C\rangle]=[G: G]=1$, so $\Gamma(G, C)$ has exactly one component.

Theorem (Cosets As Components)

Let H be the subgroup of G generated by an inverse-closed subset C of $G \backslash e$, and let $m=[G: H]$. Then the Cayley graph $\Gamma(G, C)$ has components $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k}$, where $V\left(\Gamma_{1}\right), V\left(\Gamma_{2}\right), \ldots, V\left(\Gamma_{m}\right)$ are the m left cosets of H in G.

Proof.

By Lemma SCSC, any two elements $u, v \in G$ are in the same coset of H if and only if the are in the same component of $\Gamma(G, C) .[G: H]=m$, so the cosets of H in G are the vertex sets of the components of $\Gamma(G, C)$.

Revisiting \mathbb{Z}_{8}

Example (In Light of Cosets As Components)

Direct Products and Cayley Graphs

\mathbb{Z}_{10} 's nontrivial proper subgroups

- $H=\langle 2\rangle \cong \mathbb{Z}_{5}$
- $K=\langle 5\rangle \cong \mathbb{Z}_{2}$

Example

An interesting Cayley graph
\mathbb{Z}_{10} is the inner direct product of $\langle 5\rangle$ and $\langle 2\rangle$, and thus $\mathbb{Z}_{10} \cong\langle 5\rangle \times\langle 2\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{5}$.

Example $\left(G=\mathbb{Z}_{10}, C=\{2,8\} \cup\{5\}=\{2,5,8\}\right)$

Cartesian Product of Graphs

Definition

Given two graphs X and Y, we define their Cartesian product, $X \square Y$, as having vertex set $V(X) \times V(Y)$, where $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \in E(X \square Y)$ if and only if one of the following conditions is met:

- $x_{1}=x_{2}$ and $y_{1} \sim y_{2}$
- $y_{1}=y_{2}$ and $x_{1} \sim x_{2}$

Thank You!

