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Graph Theory Refresher

Graph Theory Refresher

Graph: a set of vertices and a set of edges between them.

Directed vs. undirected graphs

Simple graph: Undirected, unweighted edges; no loops;
no multiple edges

Graph isomorphism: Bijection φ : V (Γ)→ V (Γ′) where

{u, v} ∈ E(Γ) ⇐⇒ {φ(u), φ(v)} ∈ E(Γ′)
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Introducing Cayley Graphs

Cayley Graphs and Group Actions
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Introducing Cayley Graphs

Cayley Graphs

Definition

G group, and C inverse-closed subset of G. The Cayley graph
of G relative to C, Γ(G,C), is a simple graph defined as follows:

V (Γ) = G

E(Γ) = {{g, h}|hg−1 ∈ C}.

That is, {g, h} ∈ E(Γ) if and only if there is some c ∈ C such
that h = cg = λc(g).

Note: we call C the connection set of Γ(G,C).
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Introducing Cayley Graphs

One Group, Different Cayley Graphs

Example (Z8, C generates Z8)

C = {1,−1} = {1, 7}
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Introducing Cayley Graphs

One Group, Different Cayley Graphs

Example (Z8, C generates subgroup ∼= Z4)

C = {2, 6}
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Introducing Cayley Graphs

One Cayley Graph, Two Different Groups

Example (G = S3, C = {(123), (132), (12)})
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Introducing Cayley Graphs

One Cayley Graph, Two Different Groups

Example (G = Z6, C = {2, 4, 3})
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Introducing Cayley Graphs

A Note about Definitions

There are different ways to define Cayley graphs.

Connected Cayley graphs: these require that C be a
generating set for G.

Directed Cayley graphs: these do not require C to be
inverse-closed.

Colored, directed Cayley graphs: edges (g, h) are
colored/labeled based on which c ∈ C satisfies h = cg.

Notice: () vs {} for undirected vs. directed edges
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Introducing Cayley Graphs

Lemma

Let θ be an automorphism of G. Then Γ(G,C) ∼= Γ(G, θ(C)).

Proof.

For any x, y ∈ G,

θ(y)θ(x)−1 = θ(yx−1),

so θ(y)θ(x)−1 ∈ C if and only if yx−1 ∈ C. Hence θ is an
isomorphism from Γ(G,C) to Γ(G, θ(C)).
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Group Actions and Vertex Transitivity

Group Actions and
Vertex Transitivity
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Group Actions and Vertex Transitivity

Cayley’s Theorem

Theorem (Cayley)

Every group is isomorphic to a group of permutations.

Proof idea.

Consider the left regular representation λg : G→ G, defined by

λg(x) = gx.

Note: We could have instead considered the right regular
representation ρg : G→ G, defined as ρg(x) = xg.
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Group Actions and Vertex Transitivity

Transitive and Regular Group Actions

Let S be a permutation group acting on a set X.

Definition

S is transitive if for every x, y ∈ X, there is σ ∈ S such that
σ(x) = y.

Definition

S is regular if it is transitive and the only σ ∈ S that fixes any
element of X is the identity.

We say S acts transitively/regularly (resp.) on X.
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Group Actions and Vertex Transitivity

Vertex Transitive Graphs

Definition

A graph Γ is vertex transitive if Aut(G) acts transitively on
Γ, i.e. Aut(G) has only one orbit.

Example (Not vertex transitive)

Also not regular.

• • •
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•
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Group Actions and Vertex Transitivity

Vertex Transitive Graphs

Theorem

The Cayley graph Γ(G,C) is vertex transitive.

Proof.

Consider the right regular representation of G, ρg : x 7→ xg.
Observe that

(yg)(xg)−1 = ygg−1x−1 = yx−1,

so {xg, yg} ∈ E(Γ(G,C)) if and only if {x, y} ∈ E(Γ(G,C)).
Then ρg is an automorphism of Γ(G,C). By Cayley’s Theorem,
G = {ρg|g ∈ G} forms a subgroup of Aut(Γ(G,C)) isomorphic
to G. For g, h ∈ G, ρg−1h(g) = h. Thus G acts transitively on
Γ(G,C).
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Group Actions and Vertex Transitivity

Corollary

Aut(Γ(G,C)) has a regular subgroup isomorphic to G.

Proof.

G = {ρg|g ∈ G} is a subgroup of Aut(Γ(G,C)) that acts
transitively on V (Γ) = G. Since G ∼= G, only the identity will
fix any element of V (Γ) = G. Thus G is regular.
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Group Actions and Vertex Transitivity

A Way to Identify Cayley Graphs

Theorem

If a group G acts regularly on the vertices of Γ, then Γ is the
Cayley graph of G relative to some inverse-closed C ⊂ G \ e.

Proof.

Grab u ∈ V (Γ). Let gv be the element of G such that v = gv(u).
Define C := {gv : v is adjacent to u}.

If x, y ∈ V (Γ), then gx ∈ Aut(Γ), so x ∼ y if and only if
g−1x (x) ∼ g−1x (y). But g−1x (x) = u, and g−1x (y) = gyg

−1
x (u), so

x ∼ y if and only if gyg
−1
x ∈ C.

Identify each vertex x with gx. Then Γ = Γ(G,C). Γ is
undirected with no loops, so C is an inverse-closed subset of
G \ e.
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Group Actions and Vertex Transitivity

Remark

Not all vertex-transitive graphs are Cayley graphs. Example:
the Petersen graph.

Example (Petersen graph)

Only two groups of order 10: Z10 and D5.
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Components and Cosets

Structure of the Cayley graph

How to anticipate the structure of the Cayley graph Γ(G,C)?

Examine the subgroup generated by C.

The Cayley graph gives a visual representation of the left
cosets of the subgroup generated by C.

Time to examine the components of a Cayley graph...
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Components and Cosets

Components of the Cayley graph

Lemma (Same Coset, Same Component)

Let H be the subgroup of G generated by an inverse-closed
subset C of G \ e. Then two vertices u, v in Γ(G,C) are in the
same component of Γ(G,C) if and only if uH = vH.

Proof. (⇒).

Assume u, v in the same component Γk of Γ(G,C). Then there
is at least one path from u to v, P = {x1, x2, . . . , xm}, where
x1 = u and xm = v. So xi+1x

−1
i ∈ C for 1 ≤ i < m. Then

v = (vx−1m−1)(xm−1x
−1
m−2) · · · (x2u

−1)u = hu

, for some h ∈ H. Equivalently, h = vu−1, so vu−1 ∈ H. Then
uH = vH.
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Components and Cosets

Components of the Cayley graph

Proof. (⇐).

Assume uH = vH. Then vu−1 ∈ H, so v = hu for some h ∈ H.
Further, h = cmcm−1 · · · c2c1 where ci ∈ C, 1 ≤ i ≤ m.

Let x0 = u, x1 = c1x0, x2 = c2x1, . . . , xm = cmxm−1 = v. Then
we have a path from u to v, namely,
P = {u, x1, x2, . . . , xm−1, v}. Thus u and v are in the same
component of Γ(G,C).
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Components and Cosets

When are Cayley graphs connected?

Corollary

The Cayley graph Γ(G,C) is connected if and only if C
generates G.

Proof.

If Γ(G,C) is connected, then it has only one component. Hence
[G : 〈C〉] = 1, so G = 〈C〉.

If C generates G, then [G : 〈C〉] = [G : G] = 1, so Γ(G,C) has
exactly one component.



Cayley Graphs and Group Actions Components and Cosets Direct Products

Components and Cosets

Theorem (Cosets As Components)

Let H be the subgroup of G generated by an inverse-closed
subset C of G \ e, and let m = [G : H]. Then the Cayley graph
Γ(G,C) has components Γ1,Γ2, . . . ,Γk, where
V (Γ1), V (Γ2), . . . , V (Γm) are the m left cosets of H in G.

Proof.

By Lemma SCSC, any two elements u, v ∈ G are in the same
coset of H if and only if the are in the same component of
Γ(G,C). [G : H] = m, so the cosets of H in G are the vertex
sets of the components of Γ(G,C).
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Revisiting Z8

Revisiting Z8

Example (In Light of Cosets As Components)
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Direct Products
and Cayley Graphs
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Fun with Z10

Z10’s nontrivial proper subgroups

H = 〈2〉 ∼= Z5

K = 〈5〉 ∼= Z2

Example
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Fun with Z10

An interesting Cayley graph

Z10 is the inner direct product of 〈5〉 and 〈2〉, and thus
Z10
∼= 〈5〉 × 〈2〉 ∼= Z2 × Z5.

Example (G = Z10, C = {2, 8} ∪ {5} = {2, 5, 8})
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Fun with Z10

Cartesian Product of Graphs

Definition

Given two graphs X and Y , we define their Cartesian
product, X�Y, as having vertex set V (X)× V (Y ), where
{(x1, y1), (x2, y2)} ∈ E(X�Y ) if and only if one of the following
conditions is met:

x1 = x2 and y1 ∼ y2
y1 = y2 and x1 ∼ x2
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Fun with Z10

Thank You!


	Cayley Graphs and Group Actions
	Graph Theory Refresher
	Introducing Cayley Graphs
	Group Actions and Vertex Transitivity

	Components and Cosets
	Components and Cosets
	Revisiting Z8

	Direct Products
	Fun with Z10


