Exam 6
Name: Key
Chapter LT
Show all of your work and explain your answers fully. There is a total of 100 possible points.
Partial credit is proportional to the quality of your explanation. You may use Sage to manipulate and row-reduce matrices. No other use of Sage may be used as justification for your answers. When you use Sage be sure to explain your input and show any relevant output (rather than just describing salient features). P_{n} is the vector space of polynomials with degree n or less, and $M_{m, n}$ is the vector space of $m \times n$ matrices.

1. Use the definition of a linear transformation to verify that T is a linear transformation. (15 points)

$$
T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \quad T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{c}
2 a+b \\
a-b
\end{array}\right]
$$

(1) $T(\underset{\sim}{x}+\underset{\sim}{y})=T\left(\left[\begin{array}{l}a_{1} \\ b_{1}\end{array}\right]+\left[\begin{array}{l}a_{2} \\ b_{2}\end{array}\right]\right)=T\left(\left[\begin{array}{l}a_{1}+a_{2} \\ b_{1}+b_{2}\end{array}\right]\right)=\left[\begin{array}{l}\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \\ \left(a_{1}+a_{2}\right)-\left(a_{2}+b_{2}\right)\end{array}\right]$

$$
=\left[\begin{array}{l}
\left(2 a_{1}+b_{1}\right)+\left(2 a_{2}+b_{2}\right) \\
\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
2 a_{1}+b_{1} \\
a_{1}-b_{1}
\end{array}\right]+\left[\begin{array}{c}
2 a_{2}+b_{2} \\
a_{2}-b_{2}
\end{array}\right]=T(x)+T(y)
$$

(2)

$$
\begin{aligned}
\alpha \in \mathbb{C}, T(\alpha \underset{\sim}{x}) & =T\left(\alpha\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
\alpha a \\
\alpha b
\end{array}\right]\right)=\left[\begin{array}{c}
2(\alpha a)+\alpha b \\
\alpha a-\alpha b
\end{array}\right] \\
& =\left[\begin{array}{c}
\alpha(2 a+b) \\
\alpha(a-b)
\end{array}\right]=\alpha\left[\begin{array}{c}
2 a+b \\
a-b
\end{array}\right]=\alpha T(x)
\end{aligned}
$$

So, by Definition $L T, T$ is a liner trewturnation
2. Find a basis for the range of $T, \mathcal{R}(T)$. (20 points)
$T: \mathbb{C}^{3} \rightarrow P_{2} \quad T\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=(a-2 b-c)+(2 a+b+3 c) x+(3 a+3 c) x^{2}$
Use a basis of $\mathbb{C}^{3}\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right)$ and Theorem SSRLT to
get a spanning set:

$$
\begin{aligned}
& \text { Use a basis of } \\
& \text { get a spanning set: } \\
& T\left(e_{1}\right)=1+2 x+3 x^{2}, T\left(e_{2}\right)=-2+x, T\left(e_{3}\right)=-1+3 x+3 x^{2} \\
& \text { Then } R(T)=\left\langle\left\{1+2 x+3 x^{2},-2+x,-1+3 x+3 x^{2}\right\}\right\rangle \\
&
\end{aligned}
$$

BUT This set is not livery independent. Note: the third polynomial is the sum of the first two. So remove it.

$$
\text { Basis: }\left\{1+2 x+3 x^{2},-2+x\right\}
$$

3. Consider the linear transformation S. (35 points)
$S: M_{1,3} \rightarrow P_{2} \quad S\left(\left[\begin{array}{lll}a & b & c\end{array}\right]\right)=(2 a+7 b+6 c)+(a+4 b+4 c) x+(-b-c) x^{2}$
(a) Demonstrate that S is invertible.
$[a b c] \in K(S)$ if a, b, c is a solution to a honugenas system:

$$
\left[\begin{array}{ccc}
2 & 76 \\
1 & 4 & 4 \\
0 & -1 & -1
\end{array}\right] \xrightarrow{\text { RREF }} I_{3}
$$

cuethient marx

So $K(S)=30\} ; n(S)=0 \$$ Sinjective
$r(S)+n(s)=\operatorname{dim}\left(m_{13}\right)=1 \cdot 3=3$
$\Rightarrow r(S)=3$, which equals $\operatorname{dim}\left(P_{2}\right)=3$
So S is surjective

Theorem ILTHS $\Rightarrow S$ is invertible.
(b) Find a formula for $S^{-1}: P_{2} \rightarrow M_{1,3} .\left\{1, x, x^{2}\right\}$. Preimages?
$S^{-1}(1) \Rightarrow$ solve system $\left.\left[\begin{array}{ccc|c}27 & 6 & 1 \\ 1 & 4 & 4 & 0 \\ 0 & -1 & -1 & 0\end{array}\right] \xrightarrow{\text { REF }}\left[\begin{array}{l|c}I_{3} & 0 \\ -1\end{array}\right] \Rightarrow S^{-1}(1)=\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]\right\}$

$$
\begin{aligned}
& \text { Similarly } \begin{aligned}
S^{-1}(x) & =\left\{\begin{array}{lll}
1 & -2 & 2
\end{array}\right\}
\end{aligned} \begin{aligned}
S^{-1}\left(a+b x+c x^{2}\right) & =a S^{-1}(1)+b S^{\prime}(x)+c S^{-1}\left(x^{2}\right)=a\left[\begin{array}{ll}
0 & -1
\end{array}\right]+b\left[\begin{array}{lll}
1 & -22
\end{array}\right]+c\left[\begin{array}{lll}
4 & -2 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & a & -a
\end{array}\right]+\left[\begin{array}{lll}
b-2 b & 2 b
\end{array}\right]+\left[\begin{array}{ll}
4 c & -2 c
\end{array}\right] \\
& =\left[\begin{array}{lll}
b+4 c & a-2 b-2 c & -a+2 b+c
\end{array}\right]
\end{aligned}
\end{aligned}
$$

(c) Compute the composition $S^{-1} \circ S$ and explain why this is a partial check on your work above.

$$
\begin{aligned}
& \left.\left(S^{-1} \circ S\right)([a b c])=S^{-1}(S([a b c]))=S^{-1}(2 a+7 b+6 c)+(a+4 b+4 c) x+(-b-c) x^{2}\right) \\
& \begin{array}{rlr}
\pi & {\left[\begin{array}{lll}
a+4 b+4 c+4(-b-c) & 2 a+7 b+6 c-2(a+4 b+4 c)-2(-b-c) & -(2 a+b+6 c)+2(a+b+4) \\
+(-b-c)
\end{array}\right]}
\end{array}
\end{aligned}
$$

Careful!
$=\left[\begin{array}{lll}a & b & c\end{array}\right]$ so $S^{-1} \circ S=I_{M_{13}}$, as expectal
A full cheek would slow $S_{0} S^{-1}=I_{P_{2}}$
4. The linear transformation R is not injective (you may assume this). Find two different vectors, \mathbf{x} and \mathbf{y}, such that $R(\mathbf{x})=R(\mathbf{y})$. (15 points)

$$
R: \mathbb{C}^{4} \rightarrow P_{3} \quad R\left(\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\right)=(b+c-2 d)+(-a+3 c+5 d) x+(2 b+3 c-3 d) x^{2}+(4 b+8 c-4 d) x^{3}
$$

By Theorem $K(L T$, the kerne will not be thivid. Find This first:

$$
\left[\begin{array}{cccc}
0 & 1 & -2 \\
-1 & 0 & 3 & 5 \\
0 & 2 & 3 & -3 \\
0 & 4 & 8 & -4
\end{array}\right] \xrightarrow{\text { TREF }}\left[\begin{array}{cccc}
0 & 0 & 0 & -2 \\
0 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

80

$$
\begin{aligned}
& a=2 \\
& b=3 \\
& c=-1 \\
& d=1
\end{aligned}
$$

So $R\left(\left[\begin{array}{c}2 \\ 3 \\ -1 \\ -1\end{array}\right]\right)=0 \operatorname{tox}+0 x^{2}+0 x^{3}=R\left(\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right)$

5. Suppose that $T: U \rightarrow V$ and $S: U \rightarrow V$ are linear transformations which agree on a basis of U. That is, for some basis $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ of $U, T\left(\mathbf{u}_{i}\right)=S\left(\mathbf{u}_{i}\right)$ for $1 \leq i \leq n$. Prove that T and S are equal functions. (15 points)
$T=S$ means $T(\underline{u})=S(\underset{\sim}{u})$ for every $\underset{\sim}{u} \in U$

$$
\begin{array}{rlrl}
T(\underline{u}) & =T\left(a_{1} u_{1}+a_{2} \underline{u}_{2}+\cdots+a_{n} \underline{u}_{n}\right) \quad \text { B spans } U \\
& =a_{1} T\left(u_{1}\right)+a_{2} T\left(u_{2}\right)+\cdots+a_{n} T\left(u_{n}\right) & L T L C \\
& =a_{1} S\left(u_{1}\right)+a_{2} S\left(u_{2}\right)+\cdots+a_{n} S\left(u_{n}\right) & \text { Hypotleiss } \\
& =S\left(a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}\right) & \text { LTLC } \\
& =S(\underline{u}) &
\end{array}
$$

