Kleene Algebras: The Algebra of Regular Expressions

Adam Braude

University of Puget Sound

May 5, 2020

Regular Expressions

∟_{Motivation}

Regular Expressions: Motivation

Consider the following (beautiful) Sage code:

 $\mathbf{x} = 11^2$ galoisf $121 = \mathrm{GF}(\mathbf{x})$

If you're the Sage interpreter, how do you recognize the variable names? How do you know what a number should look like?

Regular Expressions

└─Recognizing Integers

Regular Expressions: Recognizing Integers

For a simple example, suppose we want to recognize integers.

- \blacksquare An integer may begin with a sign.
- The first digit of an integer is a 1-9.
- Subsequent digits may be 0-9.

Kleene Algebras: The Algebra of Regular Expressions — Regular Expressions — FSM

Regular Expressions: FSM

Integer-Recognizing State Machine

State 0: If next input is a - go to State 1. If 1-9, go to State 2. Otherwise remain.

State 1: If next input is a 1-9, go to State 2. Otherwise, go to State 0.

State 2: If next input is a 0-9, remain. Otherwise report the observed integer and go to State 0.

Kleene Algebras: The Algebra of Regular Expressions └─Regular Expressions

└─Basic RE Notation

Regular Expressions: Basic RE Notation

- A character literal matches against itself. E.g. *a* matches an "a".
- Character literals can be concatenated. *apotheosis* matches "apotheosis".
- a|b matches "a" or "b".
- a^* matches a sequence of 0 or more "a"s.
- We can rewrite the Integer-Recognizing State Machine as $(|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*$.

Kleene Algebras: The Algebra of Regular Expressions Legular Expressions LPractical Note

Regular Expressions: Practical Note

- Shorthands are used for large chains of |. For example, in most regular expression systems [1 - 9] captures any numeral from 1 to 9.
- Additional operations can be defined using the basic ones. For example + is used to indicate 1 or more, a shorthand for aa^* . ? is used to indicate 0 or 1, so a? is equivalent to (|a).
- With these conveniences, we can rewrite the IRSM as $-?[1-9][0-9]^*$.

Regular Expressions

L_{Formalizing}

Formalizing Regular Expressions

- A *word* is a possibly-empty sequence of inputs from some alphabet \mathcal{A} .
- An *event* is a set of words.
- The operation | is defined as set-theoretic union \cup .
- Concatenation is defined as $AB = \{ab \mid a \in A, b \in B\}.$
- Define 0 to be the empty event and 1 to be the event containing only the empty word.
- Exponentiation is $A^0 = 1$, $A^n = AA^{n-1}$.
- $\bullet A^* = A^0 \cup A^1 \cup A^2 \cup \cdots.$
- Any event that can be constructed using only the primitives, |, concatenation, and * is a *regular event*.

Kleene Algebras

└─What's a Kleene Algebras

What's a Kleene Algebra?

- Kleene Algebras are an attempt to generalize the properties of Regular Expressions.
- A Kleene Algebra consists of a set K with 3 operations.
- \blacksquare Binary operations: +, ·.
- Unary operation: *.
- Special elements: 0, 1.

Kleene Algebras

 L_{Axioms}

Kleene Algebra Axioms: + and \cdot

$$\bullet \ a + (b + c) = (a + b) + c$$

$$\bullet \ a+b=b+a$$

$$\bullet \ a + a = a$$

 $\bullet \ a + 0 = a$

$$\bullet \ a(bc) = (ab)c$$

- $\bullet \ 1a = a1 = a$
- $\bullet \ 0a = a0 = 0$
- $\bullet \ (a+b)c = ac+bc$
- $\blacksquare \ a(b+c) = ab + ac$

Kleene Algebras

 L_{Axioms}

Kleene Algebra Axioms: *

Define a partial order on K as $a \leq b$ if a + b = b.

 $1 + aa^* \le a^*$ $1 + a^*a \le a^*$ $ax \le x \implies a^*x \le x$ $xa \le x \implies xa^* \le x$

└─Kleene Algebras

 ${ { { { } } } }_{ { Properties} }$

Kleene Algebra Properties

$$1 \leq a^{*}$$

$$a \leq a^{*}$$

$$a \leq b \implies ac \leq bc$$

$$a \leq b \implies ca \leq cb$$

$$a \leq b \implies a+c \leq b+c$$

$$a \leq b \implies a^{*} \leq b^{*}$$

$$1+a+a^{*}a^{*} = a^{*}$$

$$a^{**} = a^{*}$$

$$0^{*} = 1$$

$$1+aa^{*} = a^{*}$$

$$1+a^{*}a = a^{*}$$

$$b+ax \leq x \implies a^{*}b \leq x$$

$$b+xa \leq x \implies ba^{*} \leq x$$

$$ax = xb \implies a^{*}x = xb^{*}$$

$$(cd)^{*}c = c(dc)^{*}$$

$$(cd+b)^{*} = a^{*}(ba^{*})^{*}$$

Kleene Algebras: The Algebra of Regular Expressions — Kleene Algebras — Properties

Matrices

- The set of matrices over a Kleene algebra is a Kleene algebra.
- \blacksquare + and \cdot are just matrix addition and multiplication.
- \blacksquare * is defined as

$$E = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$E^* = \begin{bmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ d^*c(a+bd^*c)^* & d^*+d^*c(a+bd^*c)^*bd^* \end{bmatrix}$$

Kleene Algebras

 $\square_{\text{Properties}}$

Fact

Any element of a Kleene algebra can be used to construct a corresponding state machine.

Kleene Algebras: The Algebra of Regular Expressions └─Kleene Algebras └─KAT

Kleene Algebra with Tests

- A Kleene Algebra is a Kleene Algebra with Tests if it has a subset *B* that is a Boolean Algebra with + as the meet and · as the join.
- This implies that a complement operator ' is defined for members of B.
- This allows encoding of conditionals. For example, *if a then b else c* can be encoded as

$$ab + a'c.$$

Loops can also be encoded. while a, b is encoded as (ab)*a'.
This allows the description of more complicated programs.

Cleanup

∟_{References}

References I

John Horton Conway. Regular algebra and finite machines. Courier Corporation, 2012.

Dexter Kozen.

A completeness theorem for kleene algebras and the algebra of regular events. Technical report, Cornell University, 1990.

Dexter Kozen.

On kleene algebras and closed semirings.

In International Symposium on Mathematical Foundations of Computer Science, pages 26–47. Springer, 1990.

https://docs.python.org/3/library/re.html.

-Cleanup

∟_{References}

References II

Peter Höfner and Bernhard Möller.
 Dijkstra, floyd and warshall meet kleene.
 Formal Aspects of Computing, 24(4-6):459-476, 2012.

Dexter Kozen.

Kleene algebra with tests. ACM Transactions on Programming Languages and Systems (TOPLAS), 19(3):427–443, 1997.

