Kleene Algebras: The Algebra of Regular EXPRESSIONS

Adam D. Braude
Department of Mathematics and Computer Science
University of Puget Sound
Tacoma, WA
abraude@pugetsound.edu

May 3, 2020

1 Colophon

This paper is © 2020 Adam Braude. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at https://www.gnu.org/copyleft/fdl.html.

2 Introduction

Kleene algebras and their extensions represent a powerful tool for analyzing the correctness and equivalence of programs. They are designed to generalize regular expressions, a programmatic tool that can recognize any regular input. In this paper, we will present an axiomatization of Kleene algebras and a proof that they do, in fact, describe the behavior of regular expressions. We will go on to showcase a number of properties of Kleene algebras. In particular, we will find that $n \times n$ matrices over a Kleene algebra are also a Kleene algebra. Finally, we will survey a number of related structures and their additional or missing properties.

3 Kleene Algebras

3.1 Definition of a Kleene Algebra

For the purposes of this paper, we will use the definition of a Kleene algebra given in [1], though others exist. A Kleene algebra consists of a set K with 2 binary operations, + and \cdot, a unary operation, *, and two elements, 0 and 1 , that have special properties. Note that we often write $a \cdot b$ as $a b$ for convenience. We define a partial order \leq on K as $a \leq b \Longleftrightarrow a+b=b$. For K to be a Kleene algebra, it must satisfy the following axioms:
(1): $a+(b+c)=(a+b)+c$
(2): $a+b=b+a$
(3): $a+a=a$
(4): $a+0=a$
(5): $a(b c)=(a b) c$
(6): $1 a=a 1=a$
(7): $0 a=a 0=0$
(8): $(a+b) c=a c+b c$
(9): $a(b+c)=a b+a c$
(10): $1+a a^{*} \leq a^{*}$
(11): $1+a^{*} a \leq a^{*}$
(12): $a x \leq x \Longrightarrow a^{*} x \leq x$
(13): $x a \leq x \Longrightarrow x a^{*} \leq x$.

Axioms 1-4 state that + is commutative, associative, idempotent, and has an identity 0 . Axioms 5-6 state that \cdot is associative and has an identity 1 . Students familiar with ring theory will find axioms $7-9$ to be very similar to those relating addition and multiplication in a ring. Axioms 10-13 deal with the unary operator *, and are best illuminated by Example 3.3. We define exponentiation within a Kleene algebra inductively as follows:

$$
a^{0}=1, a^{n}=a^{n-1} a .
$$

3.2 Proof: \leq is a partial order

For \leq to be a partial order, it must be reflexive, antisymmetric, and transitive. By axiom $3, \leq$ is reflexive. Suppose $a \leq b$ and $b \leq a$. Then $a+b=b$ and $a+b=a$, so $a=b$ and \leq is antisymmetric. Suppose $a \leq b$ and $b \leq c$. Then $a+b=b$ and $b+c=c$. Then $b+c=a+b+c=a+c$. Since $b+c=c$, this implies $a+c=c$, so \leq is transitive. This proves that \leq is a partial order.

3.3 Example: Regular Expressions

Suppose you are writing a computer program that parses text documents, and you want to be able to recognize valid integers. A string of characters representing an integer may begin with a - sign. Then, the first character will be a numeral in the range 1-9. This first numeral might be followed by any finite number of characters in the range $0-9$. So how might you teach a computer how to recognize this pattern? One approach would be to write a finite state machine, which would look something like this:

1. If next character is a - , go to state 2 . If next character is a $1-9$, go to state 3 .
2. If next character is a $1-9$, go to state 3 . Otherwise, go to state 1 .
3. If next character is not a $0-9$, go to state 1 and record the observed number.

However, this is a cumbersome approach. For proof of that, think about how many more states and cases would be needed to identify decimal numbers. As an alternative, we can adopt a library such as Python's $r e[2]$ and write a regular expression that matches against the strings that we are trying to identify. The first building block of a regular expression is literal characters. For example, "a" matches against the letter a. The second is the operation of concatenation. "ab" matches against an a immediately followed by a b. "alb" matches against an a or a b. Generally, I is a binary operation that matches against either of its two sides. "a*" matches against 0 or more copies of a concatenated together. So "aaaa", "a", and "" would all match, but "aba" would not. With these operations, we can rewrite our finite state machine above as " $(\mid-)(1|2| 3|4| 5|6| 7|8| 9)(0|1| 2|3| 4|5| 6|7| 8 \mid 9)^{*}$ ". Writing down large chains of I operations is cumbersome, so practical systems such typically have shorthands for choosing a single character from a large set. For example, re has a special . character that matches against any single non-newline character. re also has a number of additional operations, such as + , which matches against 0 or 1 copies of the proceeding regular expression. All of these can be rewritten in terms of concatenation, I, and *. "a?" is a convenient way to write "(la)" - note the empty string before the I. It is a classical result that every regular expression corresponds to a finite state machine. A proof of this can be found in [1].
[3] provides a good formalism of regular expressions, which will be largely replicated here. Consider a word to be a possibly-empty sequence of inputs. Each input comes from a set \mathcal{A}, referred to as the alphabet. An event is a set of words. The empty set is denoted 0 , and the set containing only the empty word is denoted 1 . The operation 1 is defined as $A \mid B=A \cup B$, the set union operation. Concatenation is defined as $A B=\{a b \mid a \in A, b \in B\}$. When working with strings, the elementwise operation is string concatenation. The * operator is defined as $A^{0} \cup A^{1} \cup A^{2} \cup \cdots$ where exponentiation uses the same inductive definition as in section 3.1.

3.4 Proof: Regular Expressions are a Kleene Algebra

Using the formalism above, we can prove that regular expressions are a Kleene algebra. K is the set of sets of events. The operation I is the Kleene + , concatenation is \cdot, and * is *. Axioms 1-4 follow readily from the fact that I is set union:

$$
\begin{aligned}
& A+(B+C)=A \cup(B \cup C)=(A \cup B) \cup C=(A+B)+C \\
& A+B=A \cup B=B \cup A=B+A \\
& A+A=A \cup A=A \\
& A+0=A \cup 0=A
\end{aligned}
$$

For axiom 5, we have:

$$
(A B) C=\{a b \mid a \in A, b \in B\} C=\{a b c \mid a \in A, b \in B, c \in C\}=A\{b c \mid b \in B, c \in C\}=A(B C)
$$

Let e be the empty word. For any word $a, a e=e a=a$. Then we can prove that axiom 6 holds:

$$
\begin{aligned}
& 1 A=\{e a \mid a \in A\}=\{a \mid a \in A\}=A, \\
& A 1=\{a e \mid a \in A\}=\{a \mid a \in A\}=A .
\end{aligned}
$$

For axiom 6, we note that $0 A=\{z a \mid a \in A, z \in 0\}$, but $0=\emptyset$ so $0 A=\emptyset$. A symmetric argument holds for $A \cdot 0$, so axiom 7 is satisfied as well. The following chain of equations demonstrates that axiom 8 is satisfied

$$
A B+B C=\{x c \mid x \in A, c \in C\} \cup\{x c \mid x \in B, c \in C\}=\{x c \mid x \in A \cup B, c \in C\}=(A \cup B) C=(A+B) C .
$$

A symmetrical argument demonstrates that axiom 9 is satisfied. For axiom 10, we begin with

$$
1+A A^{*}=\left(A^{0}\right)+\left(A\left(A^{0}+A^{1}+A^{2}+\cdots\right)\right)
$$

Using axiom 9, we can distribute the A over the A^{*} :

$$
\left(A^{0}\right)+\left(A\left(A^{0}+A^{1}+A^{2}+\cdots\right)\right)=\left(A^{0}\right) \cup\left(A^{1}+A^{2}+A^{3}+\cdots\right)=A^{*}
$$

Since $1+A A^{*}=A^{*}$ and \leq is reflexive, $1+A A^{*} \leq A^{*}$. The demonstration that axiom 11 is satisfied is largely similar, but requires the use of the other distributivity axiom, axiom 8.

For axiom 12, suppose $A X \leq X$. By the definition of \leq, this implies that $A X+X=X$. This implies that $A X \cup X=X$, which is true exactly when $A X \subseteq X$. That is, $a x \in X$ for all $a \in A, x \in X$. Suppose $A^{n-1} X \subseteq X$. Let $z \in A^{n} X$. This implies that $z=a_{n} a_{n-1} \bar{a}_{n-2} a_{n-3} \ldots a_{1} x$ for some $a_{i} \in A, x \in X$. Since $A^{n-1} X \subseteq X$, $a_{n-1} a_{n-2} a_{n-3} \ldots a_{1} x \in X$. Since $a x \in X$ for all $a \in A, x \in X$ and $a_{n} \in A, z \in X$. So $A^{n} \subseteq X$. By induction, this holds for all A^{n}. Then

$$
A^{*} X=\left(A^{0}+A^{1}+A^{2}+A^{3}+\cdots\right) X=\left(X+A X+A^{2} X+A^{3} X+\cdots\right)=(X+X+X \cdots+X)=X
$$

The proof of axiom 13 is essentially symmetrical to the above. So K, with I, $\cdot, *, 0$, and 1 , satisfies all of the axioms of a Kleene algebra.

3.5 Example: Algebras of Binary Relations

Given a set S, any subset of $S \times S$ is a binary relation. We can build a Kleene algebra with a set of binary relations. The + operation is set union. - is relational composition, defined as

$$
A \circ B=\{(a, b) \mid \exists y(x, y) \in A,(y, z) \in B\}
$$

The Kleene $*$ star operator is defined as the reflexive transitive closure. In other words, A^{*} is the smallest relation containing A with both the reflexive and transitive properties. As for the two special elements of a Kleene algebra, 0 is the empty relation and 1 is the identity relation.

4 Properties of Kleene Algebras

4.1 Elementary Properties

In any Kleene algebra:
(1): $1 \leq a^{*}$
(2): $a \leq a^{*}$

```
(3): \(a \leq b \Longrightarrow a c \leq b c\)
(4): \(a \leq b \Longrightarrow c a \leq c b\)
(5): \(a \leq b \Longrightarrow a+c \leq b+c\)
(6): \(a \leq b \Longrightarrow a^{*} \leq b^{*}\)
(7): \(1+a+a^{*} a^{*}=a^{*}\)
(8): \(a^{* *}=a^{*}\)
(9): \(0^{*}=1\)
(10): \(1+a a^{*}=a^{*}\)
(11): \(1+a^{*} a=a^{*}\)
(12): \(b+a x \leq x \Longrightarrow a^{*} b \leq x\)
(13): \(b+x a \leq x \Longrightarrow b a^{*} \leq x\)
(14): \(a x=x b \Longrightarrow a^{*} x=x b^{*}\)
(15): \((c d)^{*} c=c(d c)^{*}\)
(16): \((a+b)^{*}=a^{*}\left(b a^{*}\right)^{*}\)
```

Notice that properties (10) and (11) are stronger versions of axioms (10) and (11).

4.2 Selected Proofs

(3): Assume $a \leq b$. Then $a+b=b$. Consider $a c+b c$. By distributivity,

$$
a c+b c=(a+b) c
$$

By our assumption,

$$
(a+b) c=b c
$$

Since $a c+b c=b c$, by the definition of $\leq, a c \leq b c$.
(9): Using axiom 10 with 0 for a and then applying the definition of \leq, we get, $1+0 \cdot 0^{*}+0=0^{*}$. By axiom 7 and axiom 4 , this simplifies to $1=0^{*}$.

4.3 Matrices over Kleene Algebras

The family $M(n, K)$ of $n \times n$ matrices over a Kleene algebra is, with certain choices of operations, a Kleene algebra. The Kleene algebra + is defined as matrix addition, \cdot is defined as matrix multiplication. Defining *, however, takes significantly more effort. First, we consider the $n=2$ case. Let

$$
E=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then

$$
E^{*}=\left[\begin{array}{cc}
\left(a+b d^{*} c\right)^{*} & \left(a+b d^{*} c\right)^{*} b d^{*} \\
d^{*} c\left(a+b d^{*} c\right)^{*} & d^{*}+d^{*} c\left(a+b d^{*} c\right)^{*} b d^{*}
\end{array}\right] .
$$

To understand where this construction comes from, consider a finite state machine of the kind described in Example 3.3. It has two states, s and t. While in s, seeing a b will cause the machine to remain in s and seeing an a will cause the machine to transition to t. In t, seeing a c will cause a transition to s, while a d will cause the machine to remain in t. Assume that the machine will never see a c or d while in s and never see an a or b while in t. The columns in the matrix correspond to the starting state, and the rows correspond to the ending state. For instance, entry $(1,1)$ in the matrix above corresponds to all input strings that, assuming the machine starts in s, will result in it ending in s. We can generalize this construction to $n>2$ by making a, b, c, d into submatrices where a and d are square. A proof that $M(n, K)$ is a Kleene algebra can be found in [1].

5 Extensions and Related Structures

5.1 Definition: Right- and Left- handed Kleene algebras

A right-handed Kleene algebra is an algebraic structure for which all of the Kleene algebra axioms hold except (13). A left-handed Kleene algebra satisfies all the axioms except (12). An algebraic structure is a Kleene algebra if and only if it is both a left-handed and right-handed Kleene algebra.

5.2 Definition: *-continuous Kleene algebras

A Kleene algebra is *-continuous if it satisfies the *-continuity condition:

$$
a b^{*} c=\sum_{n} a b^{n} c
$$

5.3 Proposition

The $*$-continuity condition implies axioms 10-13.

5.4 Examples

All of the examples in section 3 are *-continuous.

5.5 Proposition

All finite Kleene algebras are *-continuous.

5.6 Proposition: There is a non *-continuous Kleene algebra

We use a construction given in [4]. Let K be a set containing every ordered pair of natural numbers and two additional elements, x and y. Give K an ordering \leq such that x is the minimal element, y is the maximal element, and all the ordered pairs are sorted by lexicographic order. Define + such that $a+b$ is a if $a \geq b$ and b otherwise. Define • as

$$
\begin{aligned}
& x a=a x=x \\
& y a=a y=y \text { for } a \neq x \\
& (a, b) \cdot(c, d)=(a+c, b+d) .
\end{aligned}
$$

Notice that $x y=x$. Then, define $*$ as

$$
\begin{aligned}
& x^{*}=(0,0)^{*}=(0,0) \\
& a \neq x, a \neq(0,0) \Longrightarrow a^{*}=y
\end{aligned}
$$

We leave the verification that this structure is a Kleene algebra as an exercise for the reader. Consider the *-continuity condition. $(0,1)^{*}=y$, by definition. However,

$$
\sum_{n}(0,1)^{n}=\sum_{n}(0, n)=(1,0) \neq y .
$$

So K is not *-continuous.

5.7 Definition: Kleene Algebra with Tests

A Kleene algebra with tests is a Kleene algebra K which has a subset B such that B is a Boolean algebra with + as the meet operation and • as the join operation. In particular, this implies that there is a unary complement operator ${ }^{\prime}$ that can be applied to elements of B. This allows for the construction of conditional statements. For example, the statement if a then b else c can be encoded as

$$
a b+a^{\prime} c
$$

References

[1] Dexter Kozen. A completeness theorem for kleene algebras and the algebra of regular events. Technical report, Cornell University, 1990.
[2] https://docs.python.org/3/library/re.html.
[3] John Horton Conway. Regular algebra and finite machines. Courier Corporation, 2012.
[4] Dexter Kozen. On kleene algebras and closed semirings. In International Symposium on Mathematical Foundations of Computer Science, pages 26-47. Springer, 1990.
[5] Peter Höfner and Bernhard Möller. Dijkstra, floyd and warshall meet kleene. Formal Aspects of Computing, 24(4-6):459-476, 2012.
[6] Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and Systems (TOPLAS), 19(3):427-443, 1997.

