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What is a Normed Division Algebra?

A Normed Division Algebra is a set, together with an additive
operation and a multiplicative operation which satisfy a certain set
of conditions, namely:

1. The Norm is ”friendly”,
meaning that
||ab|| ≤ ||a||||b||

2. Additive Commutativity

3. Additive Associativity

4. Additive Identity

5. Additive Inverses

6. Left and Right Distributivity

7. Multiplicative Identity (or
Unity)

8. All non-zero elements are
Units (Multiplicative Inverses)

9. Multiplicative Associativity
(Alternativity)



Alternativity and Power Associativity

I Alternative Algebras satisfy the condition that for all a, b
I a(ab) = (aa)b a(ba) = (ab)a b(aa) = (ba)a

I Power Associative Algebras satisfy the condition that for
consecutive multiplication on identical elements, the order of
multiplication does not matter.
I Ex: x ∗ (x ∗ (x ∗ x)) = (x ∗ (x ∗ x)) ∗ x = (x ∗ x) ∗ (x ∗ x)



Subtraction and Division

Subtraction:

a− b = a + (−b)

a− (−b) = a + (−(−b)) = a + b

Division:

a

b
= a ∗ (b−1)

a

b−1
= a ∗ ((b−1)−1) = a ∗ b



Cayley and Dickson

Arthur Cayley Leonard Eugene Dickson



Cayley-Dickson Procedure

William Rowan Hamilton was one of the first people to seriously
treat the complex numbers as an ordered pair of real numbers,
represented with

z = a + bi = (a, b)

The Cayley-Dickson Procedure aims at generalizing this concept as
a way to create new algebras.



Cayley-Dickson Procedure: from R to C

I Take R to be the base field. Then we can construct C by
making ordered pairs of elements in R , such as (a, b) where
a, b ∈ R.

I We define the conjugate of some z ∈ C as
z∗ = (a, b)∗ = (a,−b)

I The Norm of some z = (a, b) is defined as ||z || = (zz∗)1/2



Cayley-Dickson Procedure: from R to C

I The additive inverse of some (a, b) ∈ C is given by
−(a, b) = (−a,−b)

I Addition and subtraction are computed elementwise

I For some z = (a, b), w = (c , d) multiplication is defined as
zw = (a, b)(c , d) = (ac − bd , ad + bc)

I The multiplicative inverse of z = (a, b) is z−1 = z∗

||z||2



The Game Continues: CDP from C to H

We can repeat this process, using C as the base field. Let
z ,w ∈ C:

I Elements of H can be represented as (z ,w), where z ,w ∈ C

I The conjugate of some (z ,w) = q ∈ H is given by
q∗ = (z∗,−w)

I The Norm of some q = (z ,w) is given by ||q|| = (qq∗)1/2



The Game Continues: CDP from C to H

I The additive inverse of some (z ,w) ∈ H is given by
−(z ,w) = (−z ,−w)

I Addition and subtraction are computed elementwise

I For some p = (z ,w), q = (x , y) ∈ H, multipication is given by
pq = (z ,w)(x , y) = (zx − yw∗, z∗x + xw)

I The multiplicative inverse of some q ∈ H is given as
q−1 = q∗

||q||2



The Game Continues: CDP from H to O

Again we repeat this process by pairing up elements of H to form
octonions. We can represent any f ∈ O as f = (p, q) for some
p, q ∈ H.

We define the Norm, conjugate, additive inverse, multiplicative
inverse, addition, subtraction, multiplication, and division exactly
the same as we did in H.



The Game Continues: CDP from O to S

We can continue the Cayley-Dickson procedure ad infinitum and
find that just as with the octonions, there are no changes in
definitions.

However, once we create the sedenions, S, we find that we lose the
ability to guarantee multiplicative inverses and start finding zero
divisors.



Cayley-Dickson Algebra Properties

I R: Ordered, multiplicatively commutative, multiplicatively
associative, alternative, power associative

I C: Multiplicatively commutative, multiplicatively associative,
alternative, power associative

I H: Multiplicatively associative, alternative, power associative

I O: Alternative, power associative

I S: Power associative



Octonion Multiplication

Suppose some octonion f = (p, q) with p, q ∈ H.

Then there exist some x , y ,w , z ∈ C such that p = (x , y) and
q = (w , z).

With this, there exist some a1, a2, a3, a4, a5, a6, a7, a8 ∈ R such
that x = (a1, a2), y = (a3, a4),w = (a5, a6), z = (a7, a8).

We use these different representations to show that we can
breakdown any octonion into its components which come from R :

f = (p, q) = ((x , y), (w , z)) = (((a1, a2), (a3, a4)), ((a5, a6), (a7, a8)))



Octonion Multiplication

Let {1, e1, e2, e3, e4, e5, e6, e7} be a basis for O. Then we can let
our scalars come from R and represent any octonion as a linear
combination of the basis vectors. We say that for some f ∈ O

f = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7

Multiplication of octonions becomes quite cumbersome when
treated as ordered pairs, but it gets easier when each octonion is
treated as a vector.



Octonion Multiplication

(e3e4)e2 = e6e2 = −e7.

e3(e4e2) = e3(−e1) = −(−e7) = e7

Therefore
(e3e4)e2 6= e3(e4e2)

This Mnemonic is called
the Fano plane and is use
to remember the
multiplication of basis
vectors



Applications

I R is used everywhere, everyday, by everbody

I C is used in quantum physics

I H is used in the mathematics that underly relativity, as well as
for modeling rotations in computer graphics

I Until very recently, O has not had much use for anything.
Cohl Furey is currently attempting to use O to explain why the
standard model of particle physics works the way that it does.
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