A Brief Exploration of Normed Division Algebras

 From \mathbb{R} to \mathbb{O} (and beyond?)Riley Potts

May 2020

What is a Normed Division Algebra?

A Normed Division Algebra is a set, together with an additive operation and a multiplicative operation which satisfy a certain set of conditions, namely:

1. The Norm is "friendly", meaning that $\|a b\| \leq\|a|\|||b||$
2. Additive Commutativity
3. Additive Associativity
4. Additive Identity
5. Additive Inverses
6. Left and Right Distributivity
7. Multiplicative Identity (or Unity)
8. All non-zero elements are Units (Multiplicative Inverses)
9. Multiplicative Associativity (Alternativity)

Alternativity and Power Associativity

- Alternative Algebras satisfy the condition that for all a, b
- $a(a b)=(a a) b \quad a(b a)=(a b) a \quad b(a a)=(b a) a$
- Power Associative Algebras satisfy the condition that for consecutive multiplication on identical elements, the order of multiplication does not matter.
- Ex: $x *(x *(x * x))=(x *(x * x)) * x=(x * x) *(x * x)$

Subtraction and Division

Subtraction:

$$
\begin{gathered}
a-b=a+(-b) \\
a-(-b)=a+(-(-b))=a+b
\end{gathered}
$$

Division:

$$
\begin{gathered}
\frac{a}{b}=a *\left(b^{-1}\right) \\
\frac{a}{b^{-1}}=a *\left(\left(b^{-1}\right)^{-1}\right)=a * b
\end{gathered}
$$

Cayley and Dickson

Arthur Cayley

Leonard Eugene Dickson

Cayley-Dickson Procedure

William Rowan Hamilton was one of the first people to seriously treat the complex numbers as an ordered pair of real numbers, represented with

$$
z=a+b i=(a, b)
$$

The Cayley-Dickson Procedure aims at generalizing this concept as a way to create new algebras.

Cayley-Dickson Procedure: from \mathbb{R} to \mathbb{C}

- Take \mathbb{R} to be the base field. Then we can construct \mathbb{C} by making ordered pairs of elements in \mathbb{R}, such as (a, b) where $a, b \in \mathbb{R}$.
- We define the conjugate of some $z \in \mathbb{C}$ as
$z^{*}=(a, b)^{*}=(a,-b)$
- The Norm of some $z=(a, b)$ is defined as $\|z\|=\left(z z^{*}\right)^{1 / 2}$

Cayley-Dickson Procedure: from \mathbb{R} to \mathbb{C}

- The additive inverse of some $(a, b) \in \mathbb{C}$ is given by $-(a, b)=(-a,-b)$
- Addition and subtraction are computed elementwise
- For some $z=(a, b), w=(c, d)$ multiplication is defined as $z w=(a, b)(c, d)=(a c-b d, a d+b c)$
- The multiplicative inverse of $z=(a, b)$ is $z^{-1}=\frac{z^{*}}{\|z\|^{2}}$

The Game Continues: CDP from \mathbb{C} to \mathbb{H}

We can repeat this process, using \mathbb{C} as the base field. Let $z, w \in \mathbb{C}$:

- Elements of \mathbb{H} can be represented as (z, w), where $z, w \in \mathbb{C}$
- The conjugate of some $(z, w)=q \in \mathbb{H}$ is given by $q^{*}=\left(z^{*},-w\right)$
- The Norm of some $q=(z, w)$ is given by $\|q\|=\left(q q^{*}\right)^{1 / 2}$

The Game Continues: CDP from \mathbb{C} to \mathbb{H}

- The additive inverse of some $(z, w) \in \mathbb{H}$ is given by $-(z, w)=(-z,-w)$
- Addition and subtraction are computed elementwise
- For some $p=(z, w), q=(x, y) \in \mathbb{H}$, multipication is given by $p q=(z, w)(x, y)=\left(z x-y w^{*}, z^{*} x+x w\right)$
- The multiplicative inverse of some $q \in \mathbb{H}$ is given as $q^{-1}=\frac{q^{*}}{\|q\|^{2}}$

The Game Continues: CDP from \mathbb{H} to \mathbb{O}

Again we repeat this process by pairing up elements of \mathbb{H} to form octonions. We can represent any $f \in \mathbb{O}$ as $f=(p, q)$ for some $p, q \in \mathbb{H}$.

We define the Norm, conjugate, additive inverse, multiplicative inverse, addition, subtraction, multiplication, and division exactly the same as we did in \mathbb{H}.

The Game Continues: CDP from \mathbb{O} to \mathbb{S}

We can continue the Cayley-Dickson procedure ad infinitum and find that just as with the octonions, there are no changes in definitions.

However, once we create the sedenions, \mathbb{S}, we find that we lose the ability to guarantee multiplicative inverses and start finding zero divisors.

Cayley-Dickson Algebra Properties

- \mathbb{R} : Ordered, multiplicatively commutative, multiplicatively associative, alternative, power associative
- \mathbb{C} : Multiplicatively commutative, multiplicatively associative, alternative, power associative
- \mathbb{H} : Multiplicatively associative, alternative, power associative
- © : Alternative, power associative
- \mathbb{S} : Power associative

Octonion Multiplication

Suppose some octonion $f=(p, q)$ with $p, q \in \mathbb{H}$.
Then there exist some $x, y, w, z \in \mathbb{C}$ such that $p=(x, y)$ and $q=(w, z)$.

With this, there exist some $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8} \in \mathbb{R}$ such that $x=\left(a_{1}, a_{2}\right), y=\left(a_{3}, a_{4}\right), w=\left(a_{5}, a_{6}\right), z=\left(a_{7}, a_{8}\right)$.

We use these different representations to show that we can breakdown any octonion into its components which come from \mathbb{R} :
$f=(p, q)=((x, y),(w, z))=\left(\left(\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right)\right),\left(\left(a_{5}, a_{6}\right),\left(a_{7}, a_{8}\right)\right)\right)$

Octonion Multiplication

Let $\left\{\mathbf{1}, \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}, \mathbf{e}_{\mathbf{4}}, \mathbf{e}_{\mathbf{5}}, \mathbf{e}_{\mathbf{6}}, \mathbf{e}_{\mathbf{7}}\right\}$ be a basis for \mathbb{O}. Then we can let our scalars come from \mathbb{R} and represent any octonion as a linear combination of the basis vectors. We say that for some $f \in \mathbb{O}$

$$
f=a_{0}+a_{1} \mathbf{e}_{\mathbf{1}}+a_{2} \mathbf{e}_{\mathbf{2}}+a_{3} \mathbf{e}_{\mathbf{3}}+a_{4} \mathbf{e}_{\mathbf{4}}+a_{5} \mathbf{e}_{\mathbf{5}}+a_{6} \mathbf{e}_{\mathbf{6}}+a_{7} \mathbf{e}_{\mathbf{7}}
$$

Multiplication of octonions becomes quite cumbersome when treated as ordered pairs, but it gets easier when each octonion is treated as a vector.

Octonion Multiplication

$\left(\mathbf{e}_{3} \mathbf{e}_{4}\right) \mathbf{e}_{2}=\mathbf{e}_{6} \mathbf{e}_{2}=-\mathbf{e}_{7}$.
$\mathbf{e}_{3}\left(\mathbf{e}_{4} \mathbf{e}_{2}\right)=\mathbf{e}_{3}\left(-\mathbf{e}_{1}\right)=-\left(-\mathbf{e}_{7}\right)=\mathbf{e}_{7}$
Therefore $\left(\mathbf{e}_{3} \mathbf{e}_{4}\right) \mathbf{e}_{2} \neq \mathbf{e}_{3}\left(\mathbf{e}_{4} \mathbf{e}_{2}\right)$

This Mnemonic is called the Fano plane and is use to remember the multiplication of basis
 vectors

Applications

- \mathbb{R} is used everywhere, everyday, by everbody
- \mathbb{C} is used in quantum physics
- \mathbb{H} is used in the mathematics that underly relativity, as well as for modeling rotations in computer graphics
- Until very recently, © has not had much use for anything. Cohl Furey is currently attempting to use \mathbb{O} to explain why the standard model of particle physics works the way that it does.

