Exam 2
Chapter V
Show all of your work and explain your answers fully. There is a total of 100 possible points.
Partial credit is proportional to the quality of your explanation. You may use Sage to row-reduce matrices. No other use of Sage may be used as justification for your answers. When you use Sage be sure to explain your input and show any relevant output (rather than just describing salient features).

1. Is the set $R$ linearly independent or not? Give complete reasons for why your answer is correct. ( 15 points)

$$
\begin{aligned}
& R=\left\{\begin{array}{c}
\left.\left.\left[\begin{array}{c}
1 \\
0 \\
-2 \\
-5 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1 \\
2 \\
-2
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
1 \\
4 \\
2
\end{array}\right]\right\} \begin{array}{c}
\text { Theorem LIURN suggests making a } \\
\text { matrix wi the vector of } R
\end{array}\right] \text { as the columns }
\end{array}\right. \\
& {\left[\begin{array}{cc}
1 & -1
\end{array}\right] \quad r=2<3=n}
\end{aligned}
$$

So LIVRN says $R$ is
not linearly inclapeculuat.
2. Is $\mathbf{u}$ in the span of $U$ ? In other words is $\mathbf{u} \in\langle U\rangle$ ? Give complete reasons for why your answer is correct. (20 points)

Ave there scalars $a_{1}, a_{2}, a_{3}$ so that
$\mathbf{u}=\left[\begin{array}{l}5 \\ 1 \\ 2 \\ 1\end{array}\right] \quad U=\left\{\left[\begin{array}{c}-1 \\ 2 \\ -2 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ 3 \\ -2 \\ 0\end{array}\right]\right\}$
Augmented matrix:

$$
\begin{aligned}
& \text { Ave there sechlaus } a_{1}, a_{2}, a_{3} \text { so that } \\
& a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}=\underline{u} \text { ? (Doth of spa ) }
\end{aligned}
$$

$$
\left[\begin{array}{rrrr}
-1 & 0 & 1 & 5 \\
-2 & -1 & 3 & 1 \\
-2 & 1 & -2 & 2 \\
-2 & -1 & 0 & 1
\end{array}\right] \xrightarrow{\text { PREF }}\left[\begin{array}{llll}
1 & 8 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0
\end{array}\right]
$$

Last colvann is a pivot column, so Res tell us the system is not consistent. So, wo, there are no scales, and thus
3. Determine a set $S$ that is linear independent, and whose span is the null space of $A$. That is, $\mathcal{N}(A)=\langle S\rangle$. Give complete reasons for why your answer is correct. (15 points)
$\left[\begin{array}{ccccc}1 & 0 & -1 & -5 & 1 \\ \hline\end{array}\right]$ An apphration of Theorem BNS will provide exactly the set we desive

$$
A \xrightarrow{\text { PREF }}\left[\begin{array}{llllr}
1 & 0 & 0 & -2 & -1 \\
0 & 1 & 0 & 2 & -1 \\
0 & 0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Two non- pivots ( $F=\{4,5\}$ ) implies two vectors.

$$
S=\left\{\left[\begin{array}{c}
2 \\
-2 \\
-3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

The pattern of zevas and oles provides the linear inge pendence. But you count need to say this, Theorem BNS already does.
4. Determine a set $T$ that is linear independent, and whose span is equal to the span of $S$. That is, $\langle T\rangle=\langle S\rangle$. Give complete reasons for why your answer is correct. (15 points)
$S=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}-5 \\ -4\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}-4 \\ -4 \\ -\end{array}\right]\right\}$ Theorem BS suggests a matrix
whose columns ave vectors of $S$

$$
\left.A=\left[\begin{array}{ccc}
1 & -5 & 2 \\
1 & -4 & -4 \\
0 & 1 & -4
\end{array}\right] \xrightarrow{\text { TREF }}\left[\begin{array}{cccc}
1 & 0 & -3 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
D=\{1,2,4
\end{array}\right]
$$

$$
T=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{ll}
{\left[\begin{array}{l}
3 \\
3
\end{array}\right]}
\end{array}\right]\right.
$$

(a) ineady independent
(b) $\langle T\rangle=\langle 5\rangle$
all by Theoran $B S$.
5. Prove that for any $\mathbf{u} \in \mathbb{C}^{m}, 1 \mathbf{u}=\mathbf{u}$. (15 points) This is a vector equality.

For $\quad 1 \leq i \leq m$

$$
\left.\begin{array}{rlrl}
{[1} & \underline{u}
\end{array}\right]_{i}=1[\underline{u}]_{i} \quad \text { Scalar multiplication of a vector }
$$

So vectors $1 u \underset{\sim}{u} \underset{\sim}{u}$ have equal entries, so
Definition CVE implies that $1 u=u$.
6. Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ are orthogonal vectors with equal norms. Prove that $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are orthogonal vectors. (20 points)
Check the inner product.

$$
\begin{aligned}
& \langle\underset{\sim}{u}+\underline{\sim}, \underline{\sim}-\underline{v}\rangle=\langle\underline{u}+\underset{\sim}{v}, \underset{\sim}{u}\rangle+\langle\underline{u}+\underset{\sim}{v},-\underset{\sim}{v}\rangle \\
& =\langle\underline{u}, \underline{u}\rangle+\langle\underline{v}, \underline{u}\rangle+\langle\underline{u},-\underline{v}\rangle+\langle\underline{v},-\underline{v}\rangle \\
& =\langle\underline{u}, \tilde{u}\rangle+\langle\underline{v}, \tilde{u}\rangle+(-\langle\tilde{u}, \underline{v}\rangle)+(-\langle\underset{\sim}{v}, \underline{v}\rangle) \\
& =\|\underline{u}\|^{2}+0+(-0)+-\left(\|v\|^{2}\right) \\
& =\|\underline{u}\|^{2}-\|v\|^{2}=0
\end{aligned}
$$

So $\underline{u}+\underset{\sim}{v}$ \& $\underset{\sim}{u-v}$ are orthogonal vectors.

