Show all of your work and explain your answers fully. There is a total of 100 possible points.

Partial credit is proportional to the quality of your explanation. You may use Sage to row-reduce matrices. No other use of Sage may be used as justification for your answers, unless explicitly suggested in the problem's statement. When you use Sage be sure to explain your input and show any relevant output (rather than just describing salient features).

1. Consider the function  $T: \mathbb{C}^2 \to \mathbb{C}^2$  below. (35 points)

$$T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}2a-b\\a+3b\end{bmatrix}$$

(a) Prove that T is a linear transformation.

(b) Is T injective? Why or why not?



2. Consider the linear transformation  $T: S_{22} \to P_2$  defined below, where  $S_{22}$  is the vector space of  $2 \times 2$  symmetric matrices, and  $P_2$  is the vector space of polynomials of degree at most 2. (35 points)

$$T\left(\begin{bmatrix}a & b\\ b & c\end{bmatrix}\right) = (3a+b+5c) + (2a+b+4c)x + (-3a+4b+5c)x^2$$

(a) Compute the kernel of T,  $\mathcal{K}(T)$ .

(b) Compute the range of T,  $\mathcal{R}(T)$ .

(c) The rank and nullity of T obey a basic relationship. Say what this relationship is, and verify it for T.

(d) Compute the preimage of  $2 + x - 7x^2$ ,  $T^{-1}(2 + x - 7x^2)$ .

3. For the linear transformation  $R: M_{22} \to \mathbb{C}^3$  find a specific element of the codomain with an empty pre-image, demonstrating that R is not surjective. ( $M_{22}$  is the vector space of 2 × 2 matrices.) (15 points)

$$R\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = \begin{bmatrix}a+2c+2d\\a-b+3c+d\\b-c+d\end{bmatrix}$$

4. Suppose that  $S: U \to V$  and  $T: V \to W$  are linear transformations and each is injective. Prove that their composition,  $T \circ S$  is invertible. (15 points)