Exam 6
Name: Key
Chapter LT
Show all of your work and explain your answers fully. There is a total of 100 possible points.
Partial credit is proportional to the quality of your explanation. You may use Sage to row-reduce matrices. No other use of Sage may be used as justification for your answers, unless explicitly suggested in the problem's statement. When you use Sage be sure to explain your input and show any relevant output (rather than just describing salient features).

1. Consider the function $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ below. (35 points)

$$
T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{l}
2 a-b \\
a+3 b
\end{array}\right]
$$

(a) Prove that T is a linear transformation.

$$
\begin{aligned}
& \text { By the deflisition, } \\
& T(x+y)=T\left(\left[\begin{array}{l}
a_{1} \\
b_{1}
\end{array}\right]+\left[\begin{array}{l}
a_{2} \\
b_{2}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
a_{1}+a_{2} \\
b_{1}+b_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right) \\
a_{1}+a_{2}+3\left(b_{1}+b_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(2 a_{1}-b_{1}\right)+\left(2 a_{2}-b_{2}\right) \\
\left(a_{1}+3 b_{1}\right)+\left(a_{2}+3 b_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
2 a_{1}-b_{1} \\
a_{1}+3 b_{1}
\end{array}\right]+\left[\begin{array}{l}
2 a_{2}-b_{2} \\
a_{2}+3 b_{2}
\end{array}\right]=T(x)+T(y) \\
& T(\alpha \underset{\sim}{x})=T\left(\alpha\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
\alpha a b \\
\alpha b
\end{array}\right]\right)=\left[\begin{array}{l}
2(\alpha a)-\alpha b \\
\alpha a+3(\alpha b)
\end{array}\right]=\left[\begin{array}{l}
\alpha(2 a-b) \\
\alpha(a+3 b)
\end{array}\right]=\alpha\left[\begin{array}{l}
2 a-b \\
a+b b
\end{array}\right]=\alpha T(\underline{x}) \\
& \text { OR }
\end{aligned}
$$

$$
T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{l}
2 a-b \\
a+3 b
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

is a linear thanseformation by Theorem MBLT.
(b) Is T injective? Why or why not?

To employ Theorem KILT, check the kernel of T

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\underset{\sim}{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{c}
2 a-b \\
a+3 b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \begin{array}{l}
\text { leads to homusendas } \\
\text { system w/ coetficent mote }
\end{array}}
\end{aligned}
$$

$$
\left.\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \xrightarrow{\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]}\right]
$$

Only solution
nunsingular! $a=b=0$
So $\operatorname{ker}(T)=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}=\{\underset{\sim}{0}\}$ is thivial,
so T is infective.
2. Consider the linear transformation $T: S_{22} \rightarrow P_{2}$ defined below, where S_{22} is the vector space of 2×2 symmetric matrices, and P_{2} is the vector space of polynomials of degree at most 2. (35 points)

$$
T\left(\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\right)=(3 a+b+5 c)+(2 a+b+4 c) x+(-3 a+4 b+5 c) x^{2}
$$

$$
\begin{aligned}
& \text { system } \omega 1 \\
& \text { coff mishit }
\end{aligned}\left[\begin{array}{ccc}
3 & 1 & 5 \\
2 & 1 & 4 \\
-3 & 4 & 5
\end{array}\right] \xrightarrow{\text { REF }\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]} \begin{gathered}
c \text { is fie, } a=-c
\end{gathered}
$$

$$
c \text { is face, } a=-c
$$

(b) Compute the range of $T, \mathcal{R}(T)$. A basis of the do main is $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ By Theorem RSLT,

$$
\begin{aligned}
& \text { By Theorem } \left.\left.\left.\left.\left.\begin{array}{l}
\text { RSLT }, \\
R(T)=\left\langle\left\{T \left(\left[\begin{array}{c}
1 \\
0
\end{array} 0\right.\right.\right.\right.
\end{array}\right]\right), T\left(\left[\begin{array}{c}
0 \\
10
\end{array}\right]\right), T\left(\begin{array}{l}
000 \\
0
\end{array}\right]\right)\right\}\right\rangle=\left\langle\left\{3+2 x-3 x^{2}, 1+x+4 x^{2}, 5+4 x+5 x^{2}\right\}\right\rangle
\end{aligned}
$$

This spanning set is linearly dependant since

$$
\left(3+2 x-3 x^{2}\right)+2\left(1+x+4 x^{2}\right)=5+4 x+5 x^{2}
$$

A basis is $\left\{3+2 x-3 x^{2}, 1+x+4 x^{2}\right\}$
(c) The rank and nullity of T obey a basic relationship. Say what this relationship is, and verify it for T.

$$
r(T)+n(T)=\operatorname{dik}(\operatorname{doman})=\operatorname{dik}\left(S_{22}\right)=3
$$

2 by part (b) 1 by part (a)
(d) Compute the preimage of $2+x-7 x^{2}, T^{-1}\left(2+x-7 x^{2}\right)$.
has $a=1, b=-1$
ie. $T\left(\left[\begin{array}{cc}1 & -1 \\ -1 & 0\end{array}\right]\right)=2+x-7 x^{2}$

By The om KPI

$$
\begin{aligned}
T^{-1}\left(2+x-7 x^{2}\right) & =\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]+K(T) \\
& =\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]+\left\langle\left\{\left[\begin{array}{cc}
-1 & -2 \\
-2 & 1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
T\left(\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\right)=2+x-7 x^{2} \\
\text { element of prep mage, with } \mathrm{C}=0
\end{array} \quad \begin{array}{c}
\text { system }
\end{array} \quad\left[\begin{array}{rrr|r}
3 & 1 & 5 & 2 \\
2 & 1 & 4 & 1 \\
-3 & 4 & 5 & 7
\end{array}\right] \xrightarrow{\text { Raf }}\left[\begin{array}{rrr|r}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \text { One element of preimage, with } c=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) Compute the kernel of } T, \mathcal{K}(T) \text {. } \\
& T\left(\left[\begin{array}{l}
a b \\
b c
\end{array}\right]\right)=0=0+0 x+0 x^{2} \\
& \operatorname{Ker}(T)=\left\{\left.\left[\begin{array}{cc}
-c & -2 c \\
-2 c & c
\end{array}\right] \right\rvert\, c \in \mathbb{C}\right\} \\
& =\left\{\left.c\left[\begin{array}{cc}
-1 & -2 \\
-2 & 1
\end{array}\right] \right\rvert\, c \in \mathbb{C}\right\}=\left\langle\left\{\left[\begin{array}{cc}
-1 & -2 \\
-2 & 1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

3. For the linear transformation $R: M_{22} \rightarrow \mathbb{C}^{3}$ find a specific element of the codomain with an empty pre-image, demonstrating that R is not surjective. (M_{22} is the vector space of 2×2 matrices.) (15 points)
$R\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{c}a+2 c+2 d \\ a-b+3 c+d \\ b-c+d\end{array}\right]$ we desire $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ so that $R\left(\left[\begin{array}{l}a b \\ c d\end{array}\right]\right)=\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$ has wo solution $\left.\left.\left[\begin{array}{cccc|c}1 & 0 & 2 & 2 & x \\ 1 & -1 & 3 & 1 & y \\ 0 & 1 & -1 & 1 & z\end{array}\right] \begin{array}{c}\text { should have wo want } \\ \text { no }\end{array}\right] \begin{array}{l}x \\ y \\ z\end{array}\right]$ not in the Column spue of ${ }^{\mathcal{A}}$; RREF trabroose
$\rightarrow\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad$ Since $\left[\begin{array}{l}1 \\ 1 \\ 900\end{array}\right]$ is $\underline{n o t}^{1}$ in the column spare,

$$
R^{-1}\left(\left[\begin{array}{c}
1 \\
1 \\
900
\end{array}\right]\right)=\varnothing
$$

\& you could guess almost any vector here \& get a system w/ no solution
4. Suppose that $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear transformations and each is infective. Prove that their composition, $T \circ S$ is infective ${ }^{\text {inedible }}$

Suppose

$$
T\left(S\left(u_{1}\right)\right)=T\left(S\left(\underline{\sim}_{2}\right)\right)
$$

$\Rightarrow S\left(u_{1}\right)=S\left(u_{2}\right)$ since T injective
$\Rightarrow \quad u_{1}=\underline{u_{2}} \quad$ since S injectic.
which says $T_{0} S$ is infective.

Suppose

$$
\begin{aligned}
& \text { Suppose } x \in \operatorname{ker}(T \cdot S) \\
& \Rightarrow T(S(\underset{\sim}{x}))=0 \\
& \Rightarrow \quad S(x)=0 \quad \text { since } \operatorname{ker} T=\{0\} \\
& \Rightarrow \quad x=0 \quad \text { since } \operatorname{ker} S=\{Q\}
\end{aligned}
$$

So $\operatorname{ker}(T 0 S)=304$
\therefore thus TOS is injective by Thorn KILT

