Class-FCLA OD, Cholesky Decomposition

Advanced Linear Algebra

Robert Beezer
Math 390, Spring 2021

A random 6×6 matrix.

```
A = random_matrix(ZZ, 6, 6, x=-9, y=9) + I*
    random_matrix(ZZ, 6, 6, x=-9, y=9)
A = A.change_ring(CDF)
A
```

Check the base ring, avoid the Symbolic Ring.

```
A.base_ring()
```

Multiply A by its adjoint to form B. Hermitian (self-adjoint). Positive definite, since the eigenvalues are all positive. So a Cholesky decomposition is possible.

```
B = A.conjugate_transpose()*A
B.round (2)
```

```
B.eigenvalues()
```

```
U = B.cholesky()
```

U. round (2)

And the check.

```
U*U.conjugate_transpose()
```

Do it again, but exactly this time, over the rationals.
$C=$ random_matrix $(Z Z, 6,6, x=-9, y=9)$.change_ring $(Q Q)$
C
Multiply C by its adjoint to form D. Hermitian (self-adjoint). Positive definite, since the eigenvalues are all positive. So a Cholesky decomposition is possible.

```
D = C.conjugate_transpose()*C
D
```

D. eigenvalues()

```
Q = D.cholesky()
```

Q

And the check.

```
Q*Q.conjugate_transpose()
```

Sage's .indefinite_factorization() will use only field operations, giving exact results by avoiding square roots. The cost is an intermediate diagonal matrix D, so the factorization is $L D L^{*}$.

```
L, DD = D.cholesky()
DD
```

L

