Class-FCLA SD

Advanced Linear Algebra

Robert Beezer
Math 390, Spring 2021

From Example TIS, and Example TGE,

$$
A=\left[\begin{array}{cccc}
-8 & 6 & -15 & 9 \\
-8 & 14 & -10 & 18 \\
1 & 1 & 3 & 0 \\
3 & -8 & 2 & -11
\end{array}\right]
$$

```
A = matrix(QQ, [
[-8, 6, -15, 9],
[-8, 14, -10, 18],
[ 1, 1, 3, 0],
[ 3, -8, 2, -11]
])
A
```

Demonstration 1 Duplicate Example TGE and build the generalized eigenspaces of $\lambda=-2$ and $\lambda=1$. Build as Sage .right_kernel() with a "pivot" basis.
Demonstration 2 Grab the first basis vector of each generalized eigenspace, and check that is not a traditional eigenvector. Name these $x 2$ and $\times 4$. (We'll see why.)

Define $\vec{x}_{1}=\left(A-\lambda I_{4}\right) \vec{x}_{2}$ and $\vec{x}_{3}=\left(A-\lambda I_{4}\right) \vec{x}_{4}$ (which eigenvalues to be decided at class time). Two interesting things happen, which we illustrate mathematically with the first generalized eigenspace.

First

$$
\begin{aligned}
\overrightarrow{0} & =\left(A-\lambda I_{4}\right)^{2} \vec{x}_{2} \\
& =\left(A-\lambda I_{4}\right)\left(A-\lambda I_{4}\right) \vec{x}_{2} \\
& =\left(A-\lambda I_{4}\right) \vec{x}_{1} .
\end{aligned}
$$

Which says that \vec{x}_{1} is a traditional eigenvector of A, so $A \vec{x}_{1}$ is a scalar multiple of \vec{x}_{1}.

And

$$
\begin{aligned}
A \vec{x}_{2} & =\left(A-\lambda I_{4}\right) \vec{x}_{2}+\lambda \vec{x}_{2} \\
& =\vec{x}_{1}+\lambda \vec{x}_{2}
\end{aligned}
$$

Which says that $A \vec{x}_{2}$ is almost, almost, almost a scalar multiple of \vec{x}_{2}.
Demonstration 3 Make these four vectors the columns of a matrix S, and verify that the matrix is nonsingular, and hence the columns are a basis of \mathbb{C}^{4}.
Demonstration 4 Explore similarity with A and S.

