The Discrete Fourier Transform: From Hilbert Spaces to the FFT

Hayden Borg
University of Puget Sound

May 2021

Hilbert Spaces and Hand-waving

The Discrete
Fourier
Transform:
Hayden Borg

Hilbert spaces generalize Euclidean spaces.
What "defines" a Euclidean space:

- Vector space with the dot product
- Calculus

We can generalize the dot product as the inner product

Inner Product

Define the inner product to be a bilinear functional acting on two elements of a vector space $\langle\vec{x}, \vec{y}\rangle$ which is:

- Conjugate symmetric: $\langle\vec{x}, \vec{y}\rangle=\overline{\langle\vec{y}, \vec{x}\rangle}$
- Linear in its first argument:

$$
\left\langle a \overrightarrow{x_{1}}+b \overrightarrow{x_{2}}, \vec{y}\right\rangle=a\left\langle\overrightarrow{x_{1}}, \vec{y}\right\rangle+b\left\langle\overrightarrow{x_{2}}, \vec{y}\right\rangle
$$

■ Positive definite: $\langle\vec{x}, \vec{x}\rangle>0$ for all $\vec{x} \neq \overrightarrow{0}$ and $\langle\vec{x}, \vec{x}\rangle=0$ if and only if $\vec{x}=\overrightarrow{0}$

Hilbert Space and Hand-waving: Inner Product Spaces

A vector space V equipped with an inner product is an Inner Product space.

Norm

We define the norm of a vector in an Inner Product space to be $\|\vec{v}\|^{2}=\langle\vec{v}, \vec{v}\rangle$.

We have some familiar looking results:

Theorem: Parallelogram Law

For $\overrightarrow{v_{1}}, \overrightarrow{v_{2}} \in V,\|\vec{x}+\vec{y}\|^{2}+\|\vec{x}-\vec{y}\|^{2}=2\|\vec{x}\|^{2}+2\|\vec{y}\|^{2}$

Theorem: Pythagoras

For $\vec{x}, \vec{y} \in V$ such that $\langle\vec{x}, \vec{y}\rangle=0,\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}$

Hilbert Spaces and Hand-waving: Metric Spaces

A set M with metric μ is a Metric space if for all $m_{1} . m_{2}, m_{3} \in M$:

■ Identity of Indiscernibles: $\mu\left(s_{1}, s_{2}\right)=0$ if and only if

$$
S_{1}=S_{2}
$$

■ Symmetric: $\mu\left(s_{1}, s_{2}\right)=\mu\left(s_{2}, s_{1}\right)$
■ Triangle Inequality: $\mu\left(s_{1}, s_{3}\right) \leq \mu\left(s_{1}, s_{2}\right)+\mu\left(s_{2}, s_{3}\right)$
$\mu\left(s_{1}, s_{2}\right)$ is the "distance" between s_{1} and s_{2}.

Completeness

A Cauchy sequence in Metric space M is a sequence $\left\{m_{i}\right\}$ for $i \geq 1$ such that for every $\epsilon>0$ there exists an N such that $\mu\left(m_{l}, m_{k}\right)<\epsilon$ for $I, k>N$.
A Metric space M is complete if every Cauchy sequence in M converges to a point in M

Hilbert Spaces and Hand-waving

Theorem

Given an Inner Product space and $\overrightarrow{v_{1}}, \overrightarrow{v_{2}} \in V$, the identity of indiscernibles, the triangle inequality, and symmetry hold for μ defined: $\mu\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right)=\left\|\overrightarrow{v_{2}}-\overrightarrow{v_{1}}\right\|$.

An Inner Product space which is also a complete Metric space is called a Hilbert space.

We now have:
■ Vector space with inner product

- Calculus

Hilbert Spaces and Hand-waving: Central Result

Let $\left\{\overrightarrow{y_{i}}\right\}$ be an orthonormal set in Hilbert space \mathcal{H} and $\vec{v} \in \mathcal{H}$ such that $\vec{v}=\sum_{k} a_{k} \overrightarrow{y_{k}}$. Then, $a_{k}=\left\langle\vec{v}, \overrightarrow{y_{k}}\right\rangle$

Proof

$$
\left\langle\vec{v}, \overrightarrow{y_{j}}\right\rangle=\left\langle\sum_{k} a_{k} \overrightarrow{y_{k}}, \overrightarrow{y_{j}}\right\rangle=\sum_{k} a_{k}\left\langle\overrightarrow{y_{k}}, \overrightarrow{y_{j}}\right\rangle=a_{k}
$$

Hilbert Spaces and Hand-waving

The Discrete
Fourier
Transform:
Hayden Borg

Example: \mathbb{R}^{2}

$$
\begin{aligned}
& B=\left\{\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]\right\} \text { is an orthonormal basis of } \mathbb{R}^{2} . \\
& {\left[\begin{array}{l}
4 \\
8
\end{array}\right] }=\left\langle\left[\begin{array}{l}
4 \\
8
\end{array}\right],\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\right\rangle\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]+\left\langle\left[\begin{array}{l}
4 \\
8
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]\right\rangle\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right] \\
&=\frac{12}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]-\frac{4}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
6-2 \\
6+2
\end{array}\right]
\end{aligned}
$$

Hilbert Spaces and Hand-waving: $L^{2}([0, T])$

The Discrete
Fourier
Transform:
Hayden Borg

The set of all complex valued functions with real input T integrable on the interval $[0, T]$ such that $\int_{0}^{T}|f(x)|^{2} d x<\infty$.

Inner Product

$$
\langle f(x), g(x)\rangle=\int_{0}^{T} f(x) \overline{g(x)} d x
$$

Let's examine $\left\{\left.\frac{1}{\sqrt{T}} e^{i \frac{2 \pi}{T} k x} \right\rvert\, k \in \mathbb{Z}\right\}$.
First,

$$
\begin{aligned}
\int_{0}^{T}\left|\frac{1}{\sqrt{T}} e^{i \frac{2 \pi}{T} k x}\right|^{2} d x & =\int_{0}^{T} \frac{1}{\sqrt{T}}^{2} d x \\
& =1<\infty
\end{aligned}
$$

Hilbert Spaces and Hand-waving: $L^{2}([0, T])$

The Discrete
Fourier
Transform:
Hayden Borg

Next,

$$
\begin{aligned}
\left\langle\frac{1}{\sqrt{T}} e^{i \frac{2 \pi}{T} n x}, \frac{1}{\sqrt{T}} e^{i \frac{2 \pi}{T} m x}\right\rangle & =\frac{1}{T} \int 0^{T} e^{i \frac{2 \pi}{T} n x} e^{i \frac{2 \pi}{T} m x} d x \\
& =\frac{1}{T} \int 0^{T} e^{i \frac{2 \pi}{T}(n-m) x} d x \\
& =\left\{\begin{array}{l}
\frac{1}{T} \int_{0}^{T} 1 d x \text { for } n=m \\
\frac{1}{i 2 \pi(n-m)}\left(e^{2 \pi(n-m)}-e^{0}\right) \text { for } n \neq m
\end{array}\right. \\
& =\left\{\begin{array}{l}
1 \text { for } n=m \\
0 \text { for } n \neq m
\end{array}\right.
\end{aligned}
$$

So, $\left\{\left.\frac{1}{\sqrt{T}} e^{i \frac{2 \pi}{T} k x} \right\rvert\, k \in \mathbb{Z}\right\}$ is orthonormal.

$L^{2}([0, T])$ and Complex Fourier Series

The Discrete
Fourier
Transform:
Hayden Borg

We can rewrite any $f \in L^{2}([0, T])$ using our central result:

$$
f(x)=\sum_{k \in \mathbb{Z}} a_{k} e^{i \frac{2 \pi}{T} k x}
$$

Where:

$$
\begin{aligned}
a_{k} & =\left\langle f, e^{i \frac{2 \pi}{T} k x}\right\rangle \\
& =\int_{0}^{T} f(x) e^{-i \frac{2 \pi}{T} k x} d x
\end{aligned}
$$

This is the complex Fourier series.

Complex Fourier Series: Example

The Discrete
Fourier
Transform:
Hayden Borg

Square wave period 1: $f(x)=\left\{\begin{array}{l}1 \text { for } 0 \leq x<\frac{1}{2} \\ -1 \text { for } \frac{1}{2} \leq x<1\end{array}\right.$
First we find the a_{k} :

$$
\begin{aligned}
a_{k} & =\int_{0}^{1} f(x) e^{-i 2 \pi k x} d x \\
& =\int_{0}^{\frac{1}{2}} e^{-i 2 \pi k x} d x-\int_{\frac{1}{2}}^{1} e^{-i 2 \pi k x} d x \\
& =\frac{-1}{i 2 \pi k}\left(e^{-i \pi k}-1\right)-\frac{-1}{i 2 \pi k}\left(1-e^{-i \pi k}\right) \\
& =\frac{-1}{i n \pi}\left(e^{-i k \pi}-1\right) \\
& =\left\{\begin{array}{l}
0 \text { if } k \text { is even } \\
-\frac{2 i}{n \pi} \text { if } k \text { is odd }
\end{array}\right.
\end{aligned}
$$

Fourier Series: Applications

The Discrete
Fourier
Transform:
Hayden Borg

Wide variety of applications:

- Solving PDEs
- Probability theory and statistics

■ NMR, IR, etc. spectroscopy
■ X-ray crystallography

- MRI
- Image and signal processes

■ Audio engineering

Fourier Transform

The Discrete
Fourier
Transform:
Hayden Borg

Generalization to aperiodic functions
Need to consider: $L^{2}(\mathbb{R})$

Definition: Fourier Transform

$$
\begin{aligned}
& \hat{f}(\omega)=\int_{-\infty}^{\infty} f(x) e^{i 2 \pi \omega x} d x \\
& f(x)=\int_{-\infty}^{\infty} \hat{f}(\omega) e^{i 2 \pi \omega x} d \omega
\end{aligned}
$$

Orthonormal Basis: $\left\{e^{i 2 \pi \omega x} \mid \omega \in \mathbb{R}\right\}$

Discrete Fourier Transform

The Discrete
Fourier
Transform:
Hayden Borg

Digital signal and discretized data are common.
Consider a function f sampled uniformly N times over an interval $[0, T]$.
That's at: $0, \frac{T}{N}, 2 \frac{T}{N}, \ldots,(N-1) \frac{T}{N}$
"Package" in a vector:

$$
f \rightarrow \vec{v}=\left[\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{N-1}
\end{array}\right]
$$

Discrete Fourier Transform

The Discrete
Fourier
Transform:
Hayden Borg

Sample basis vectors at the same points.

Roots of Unity

The primitive N th root of unity is $\omega_{N}=e^{-i \frac{2 \pi}{N}}$

$$
e^{i \frac{2 \pi}{T} k x} \rightarrow \vec{e}_{k}=\left[\begin{array}{c}
\bar{\omega}_{N} 0 \cdot k \\
{\overline{\omega_{N}}}^{1 \cdot k} \\
{\overline{\omega_{N}}}^{2 \cdot k} \\
\vdots \\
\bar{\omega}_{N} \\
(N-1) \cdot k
\end{array}\right]
$$

Note: We only need $\overrightarrow{e_{0}}, \overrightarrow{e_{1}}, \ldots \vec{e}_{N-1}$

Discrete Fourier Transform

The Discrete
Fourier
Transform:
Hayden Borg

We'll call $\hat{\vec{v}}$ the transform of \vec{v}.

- $[\hat{\vec{v}}]_{k}=a_{k}$

Central result

Let $\left\{\vec{y}_{i}\right\}$ be an orthonormal set in Hilbert space \mathcal{H} and $\vec{v} \in \mathcal{H}$ such that $\vec{v}=\sum_{k} a_{k} \overrightarrow{y_{k}}$. Then, $a_{k}=\left\langle\vec{v}, \overrightarrow{y_{k}}\right\rangle$
'Do' the Fourier series on our sampled function:

$$
[\hat{\vec{v}}]_{k}=\left\langle\vec{v}, \vec{e}_{k}\right\rangle={\overrightarrow{\vec{e}_{k}}}^{*} \vec{v}
$$

Then,

$$
\hat{\vec{v}}=\left[\overrightarrow{e_{0}}\left|\overrightarrow{e_{1}}\right| \ldots \mid \vec{e}_{N-1}\right]^{*} \vec{v}
$$

The Discrete Fourier Transform

The Discrete
Fourier
Transform:
Hayden Borg

So we define the DFT to be the linear transformation $T: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ defined by the matrix vector product:

$$
T(\vec{v})=\left[\begin{array}{cccc}
\omega_{N}^{0 \cdot 0} & \omega_{N}^{0 \cdot 1} & \cdots & \omega_{N}^{0 \cdot(N-1)} \\
\omega_{N}^{1 \cdot 0} & \omega_{N}^{1 \cdot 1} & \cdots & \omega_{N}^{1 \cdot(N-1)} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{N}^{N \cdot 0} & \omega_{N}^{N \cdot 1} & \cdots & \omega_{N}^{N \cdot(N-1)}
\end{array}\right] \vec{v}
$$

Call this matrix \mathcal{F}.

Theorem

The matrix $\mathcal{U}=\frac{1}{\sqrt{N}} \mathcal{F}$ is unitary.

The Discrete Fourier Transform

The Discrete
Fourier
Transform:
Hayden Borg

The DFT is primarily used to go from the 'time' to the 'frequency' domain

- Spectral analysis
- Spectroscopy
- Filtering
- MRI
- Spatial information
- Artifacts
- Audio recording and engineering

Can also be used in data compression

- JPEG

■ mp3

Cooley-Tukey Algorithm

Determining F and calculating the matrix vector product is $\mathcal{O}\left(n^{2}\right)$.
We can exploit some symmetries to make this more efficient.

Danielson-Lanczos Lemma

The DFT for $N=2^{m}$ for some $m \in \mathbb{N},[\hat{\vec{v}}]_{i}=\sum_{k=0}^{N-1}[\vec{v}]_{k}\left[\mathcal{F}_{N}\right]_{i k}$, may be rewritten

$$
\begin{aligned}
& {[\hat{\vec{v}}]_{i}=\left[\mathcal{F}_{\frac{N}{2}} \vec{v}_{\text {even }}\right]_{i}+\left[D_{\frac{N}{2}} \mathcal{F}_{\frac{N}{2}} \vec{v}_{\text {odd }}\right]_{i} \text { for } 0 \leq i \leq \frac{N}{2}-1} \\
& {[\hat{\vec{v}}]_{i}=\left[\mathcal{F}_{\frac{N}{2}} \vec{v}_{\text {even }}\right]_{i}-\left[D_{\frac{N}{2}} \mathcal{F}_{\frac{N}{2}} \vec{v}_{\text {odd }}\right]_{i} \text { for } \frac{N}{2}<i<N-1}
\end{aligned}
$$

Cooley-Tukey Algorithm

The Discrete
Fourier
Transform:
Hayden Borg

Theorem

Given an N-point DTF, \mathcal{F}_{N}, where $N=2^{k}$ where $k \in \mathbb{N}$. Then,
$\mathcal{F}_{N}=\left[\begin{array}{cc}I_{\frac{N}{2}} & D_{\frac{N}{2}} \\ I_{\frac{N}{2}} & -D_{\frac{N}{2}}\end{array}\right]\left[\begin{array}{cc}\mathcal{F}_{\frac{N}{2}} & \\ & \mathcal{F}_{\frac{N}{2}}\end{array}\right]\left[\begin{array}{c}\text { even-odd } \\ \text { permutation }\end{array}\right]$.
Then the FFT may be calculated

- Calculate the $\omega_{N}(\mathcal{O}(N))$
- Recursively apply this decomposition $\log _{2} N$ times

This recursion gives $\log _{2} N$ operations for each 'slot' and there are N slots so we have $\mathcal{O}(N \log N)$

Conclusions

1 Euclidean spaces can be generalized to Hilbert spaces
2 Square-integrable functions are vectors in the Hilbert space $L^{2}(\mathbb{R})$ and can be expressed as a linear combination of basis vectors
3 The Fourier series and Fourier Transform are vector decomposition with the special basis $\left\{e^{i 2 \pi \omega x}\right\}$
4 The DFT can 'do' the Fourier Transform on discrete data and can be represented as a matrix vector product
5 The DFT can be more efficiently calculated using the Cooley-Tukey Algorithm

References

The Discrete
Fourier
Transform:
Hayden Borg

- Halmos, P. Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Masfield Centre, CT: Martino Publishing, 2013. Chp. 1.
- Choudhary, B. The Elements of Complex Analysis: Second Edition, New Delhi: New Age International Publishers, 2003. Chp. 2.
- Melrose, R. Functional Analysis: Lecture notes for 18.102. MIT, 2013. Chp. 3
- Hernández, E. and Weiss, G. A First course on Wavelets, Boca Raton, FL: CRC Press, 1996. Chps. Intro. and 1
- "Complex Fourier Series" May 18, 2020. https://eng.libretexts.org/@go/page/1614.
- Weisstein, Eric W. "Discrete Fourier Transform" From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/DiscreteFourierTransform.html
■ Weisstein, Eric W. "Fourier Matrix." From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/FourierMatrix.html

